The development of a simple electrochemical method for the selective determination of caffeic acid in wine using a molecularly imprinted polymer

Marie Elhachem ^{1,2}, Elias Bou-Maroun¹, Maher Abboud ³, Richard G. Maroun ², Philippe Cayot ¹

¹ UMR PAM Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche Comté/AgroSup Dijon, Fance ² Laboratoire CTA, UR TVA, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint Joseph de Beyrouth, Liban ³ UEGP Unité environnement, génomique et protéonique, Faculté des Sciences, Université Saint Joseph Beyrouth, Liban marie.el-hachem@agrosupdijon.fr

CONTEXT

Caffeic acid (CA) is a potent antioxidant and one of the main hydroxycinnamic acids present in wine¹. The use of traditional methods for its determination is costly, time consuming and require sample preparation² **OBJECTIVE OF THIS STUDY**

Combining electrochemistry and molecular imprinting in order to obtain a simple method used for the selective determination of caffeic acid in hydroalcoholic medium, and its application in wine

N ads (µmol)

Ζ

RE

UNIVERSITÉ

OURGOGNE FRANCHE-COMTÉ

Reuptake activity is proportional to the added polymer mass

- → The best reuptake is carried out at pH3, where the majority of caffeic acid molecules are protonated
- D. Application in wine: results of addition-recovery experiments using MIP-CA for determination of CA concentration

Wine with added CA	Added [CA] (μmol/L)	Found [CA] (µmol/L)	Recovery (%)
1 st level	110	140	120
2 nd level	240	230	100
3 rd level	660	540	80

MIPCA showed a reuptake activity of CA in wine, with recoveries ranging between 80% and 120%, indicating that the matrix had no influence on the polymer

CONCLUSIONS AND PERSPECTIVES

- > This method allowed a rapid and easy determination of caffeic acid. Electrochemistry requires a very small volume of sample without any preparation and the preparation of the polymer is relatively simple.
- > MIPCA is highly selective for caffeic acid in model and real wine.

l'institu

agro Dijor

> It would be interesting to test the same MIPCA on MWCNT electrodes, and compare the signals.

¹: Ilhami G. (2006). *Toxicology*.;217:213-220; ²: Elhachem, M. et al. (2021). *Antioxidants*.;10(3).

