

The «smoking gun» of climate change in wines

Goût de fumée des vins: ça sent le changement climatique!

António R. Graça Head of Research & Development

Adapted from

Mirabelli-Montan, Y. A., Marangon, M., Graça, A., Marangon, C. M. M., & Wilkinson, K. L. (2021). A review of the techniques for mitigating the effects of smoke taint in wine production: Sourced from the article "Techniques for Mitigating the Effects of Smoke Taint While Maintaining Quality in Wine Production: A Review" (Molecules, 2021). Original language of the article: English. IVES Technical Reviews, vine and wine.

Climate change is here...to stay

IPCC 6TH ASSESSMENT REPORT

Many changes due to past and future greenhouse gas emissions are irreversible for centuries to millennia (...) AR6 WGI – B.5

Observed increases in areas burned by wildfires have been attributed to human-induced climate change (...)

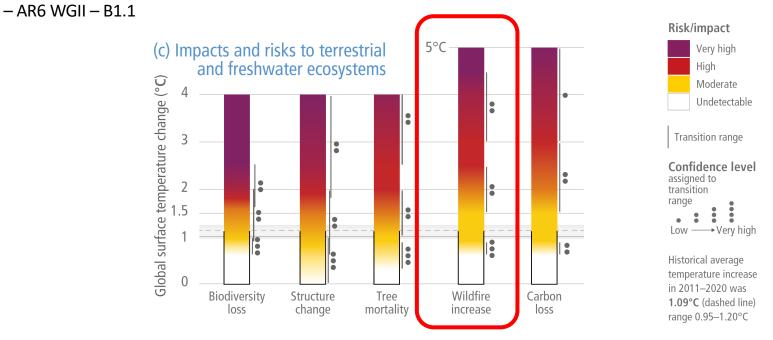
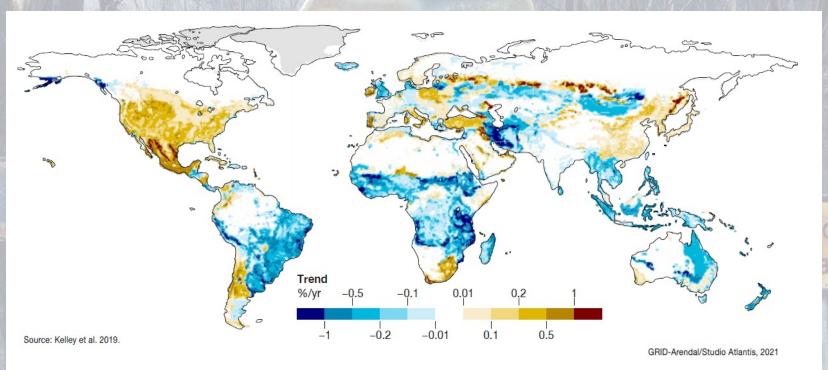
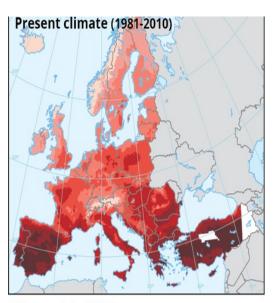
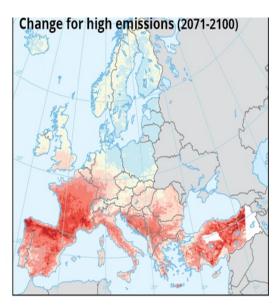



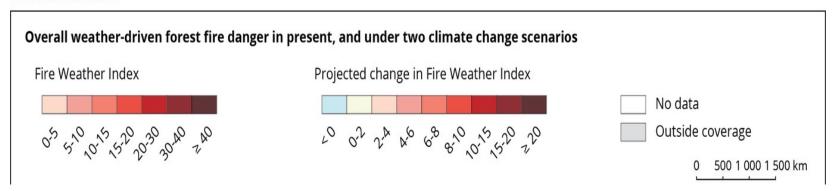
Figure SPM.3 | Synthetic diagrams of global and sectoral assessments and examples of regional key risks. Diagrams show the change in the levels of impacts and risks assessed for global warming of 0–5°C global surface temperature change relative to pre-industrial period (1850–1900) over the range.

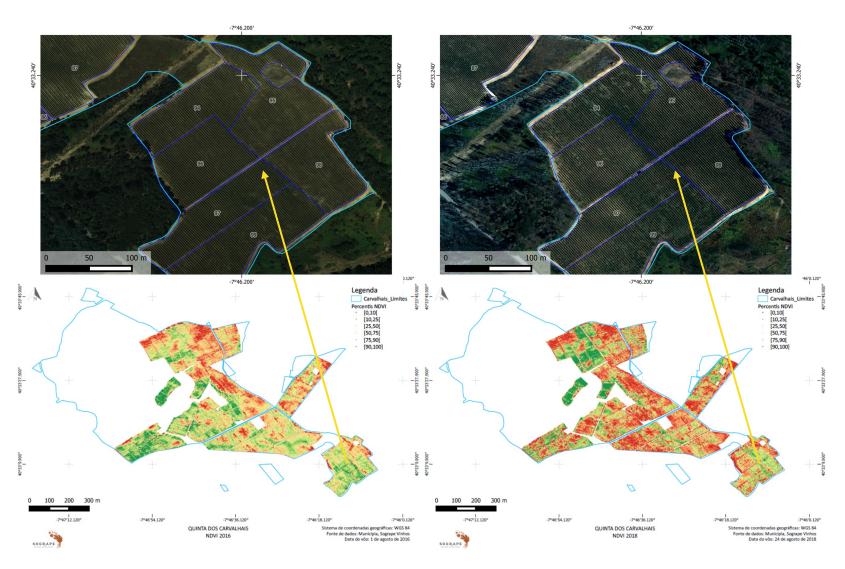





2001-2014 yearly change in burnt area due to combined effects of human ignitions, active suppression, and land fragmentation from agriculture - © 2022 United Nations Environment Programme

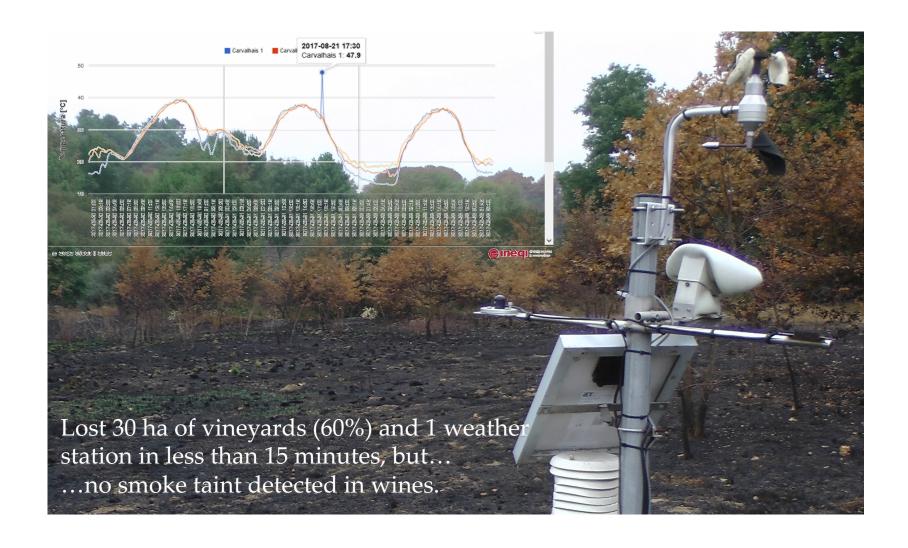
THE MEDITERRANEAN HOTSPOT





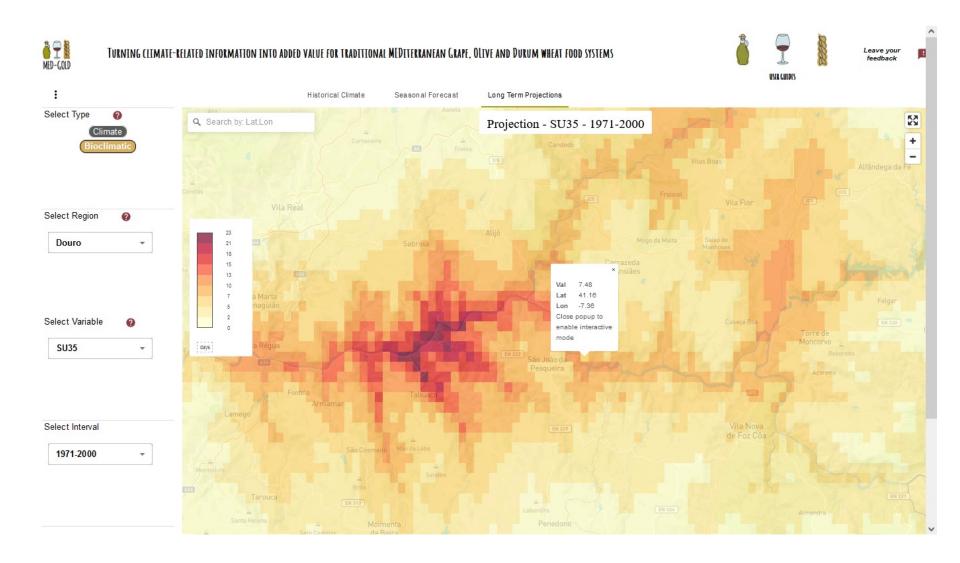
Reference data: ©ESRI

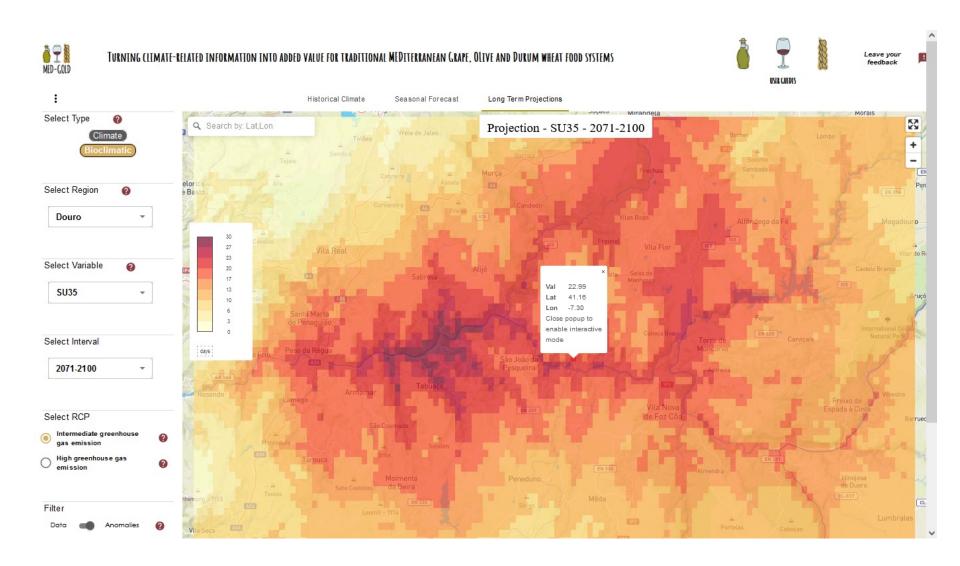
DÃO, CENTRAL PORTUGAL, AUGUST 2017

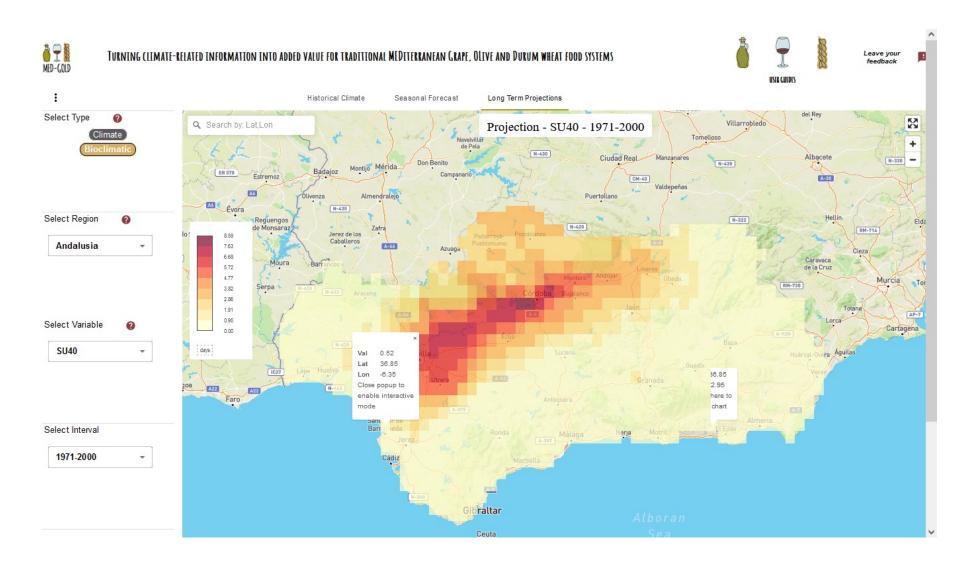


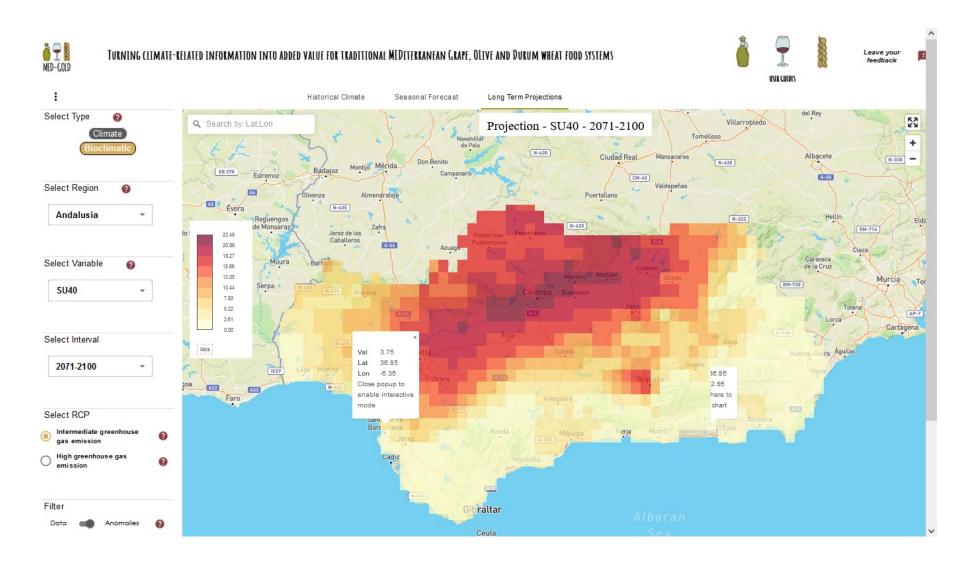
Veraison 2016

Veraison 2018

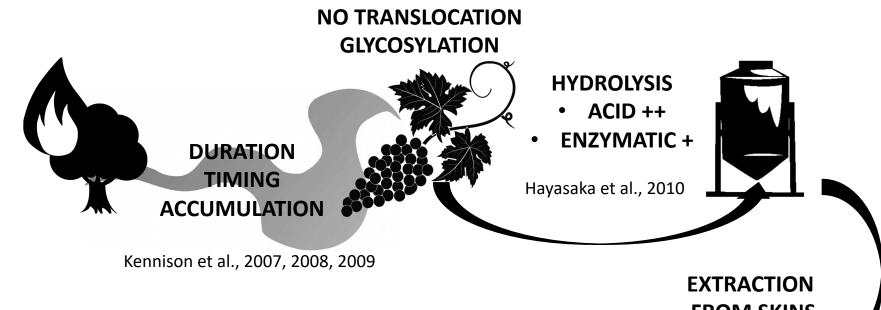

DÃO, CENTRAL PORTUGAL, AUGUST 2017






MED-GOLD SHOWS INEXORABLE TREND IN IBERIA

MED-GOLD SHOWS INEXORABLE TREND IN IBERIA



Chemical structures of characteristic smoky aroma volatiles found in smoke from wood fire (guaiacol, 4-methylguaiacol, syringol, o-cresol, m-cresol, and p-cresol)

Kennison et al., 2007, 2008, 2009 Hayasaka et al., 2010 Caffrey et al., 2019

ENZYMATIC HYDROLYSIS WITH SALIVA COMPLEX COMPOUND INTERACTIONS

Mayr et al., 2014 Caffrey et al.., 2019

ACID HYDROLYSIS OR MATRIX CHANGES?

Singh et al., 2011 Ristic et al., 2017

Kennison et al., 2008

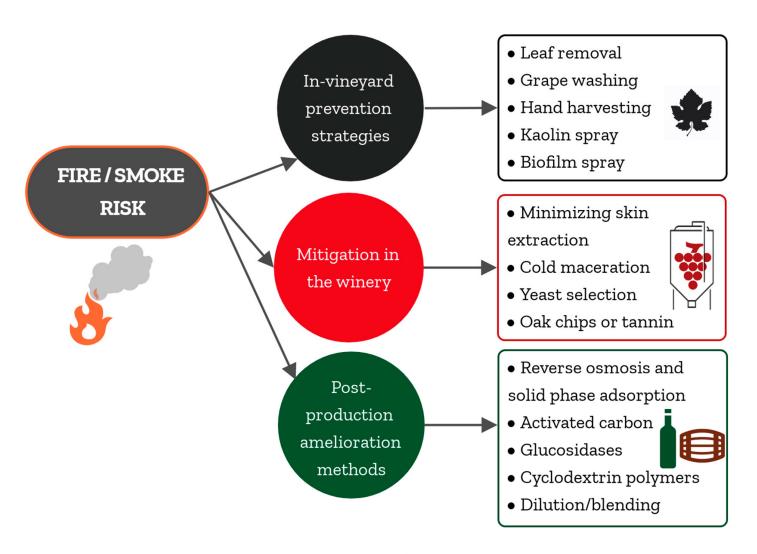


Figure 1. Summary of the different strategies used to reduce the effects of smoke on wine composition and sensory quality.

METHODS TO MINIMIZE THE NEGATIVE IMPACTS OF SMOKE

Table 1. Summary of the methods evaluated for prevention of smoke taint in the vineyard.

Method	Key Findings	Variety and Location	Effectiveness	
Washing grapes during/after smoke exposure	Washing vines or grapes with water, aqueous ethanol, or milk after smoke exposure did not affect the guaiacol content of grapes or juice. Misting grapes during smoke exposure partially mitigated the uptake of volatile phenols by grapes but did not influence the perception of smoke taint in wine [29,40,55].	Cabernet Sauvignon, Cabernet Franc, Chardonnay (Australia)	None-Low	
Leaf removal prior to or after smoke exposure			None	
Hand-harvesting fruit	Preventing leaves, which can adsorb smoke-derived volatile compounds from entering the must avoids extraction of additional taint compounds. However, this will not prevent extraction of taint compounds already present in grapes and should therefore be paired with other methods [57–59].	Pinot Noir, Merlot (Canada, Australia)	Low	
Application of kaolin to vines	There was no conclusive evidence that applying kaolin to grapevine fruit and foliage prior to smoke exposure provided protection; results varied depending on grape variety and spray coverage [30,60].	Sauvignon Blanc, Chardonnay, Merlot, Pinot Noir (Australia)	More information needed	
Application of biofilm to vines	Preliminary results were promising and suggested that applying biofilm to grapevine fruit and foliage prior to smoke exposure provides protection, but more information is needed regarding the efficacy of the spray and the feasibility of application before a fire incident [57].	Pinot Noir (Canada)	More information needed	

METHODS TO MINIMIZE THE NEGATIVE IMPACTS OF SMOKE

Table 2. Summary of the methods evaluated for mitigation of smoke taint in the winery.

Method	Key Findings	Variety & Location	Effectiveness	
Minimizingextraction from skins	Shorter maceration times, whole bunch pressing, and separating press fractions can help to reduce the extraction of smoke taint compounds from grape skins but limits the wine styles that can be made [46,59].	Grenache (Australia)	Low-moderate	
Cold maceration	Cold maceration can help to reduce the extraction of smoke taint compounds but limits the wine styles that can be made. Does not eliminate the taint, just reduces the perceived intensity in wine [46,59].	of smoke taint compounds but vine styles that can be made. Does unate the taint, just reduces the Grenache (Australia)		
Yeast selection	Different winemaking yeast can enhance desirable organoleptic characteristics, thereby masking smoke attributes. Does not eliminate the taint but can reduce the perceived intensity in wine [46].	Grenache (Australia)	Low	
Addition of oak chips or tannins	Addition of oak chips or tannin can help to mask smoke taint but does not remove smoke taint compounds and are only effective for mildly smoke-affected grapes, otherwise must be paired with other methods that can remove smoke taint compounds [46,59].	Shiraz (Australia)	Low	

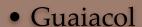
METHODS TO MINIMIZE THE NEGATIVE IMPACTS OF SMOKE

Table 3. Summary of the methods evaluated for post-production amelioration of smoke taint in wine.

Method	Key Findings	Variety & Location	Effectiveness	
Reverse osmosis and solid phase adsorption	This method reduced the concentration of smoke-derived volatile phenols in wine, but volatile phenol glycoconjugates were not removed and might still impart perceivable taint characters. This approach may not salvage severely smoke-tainted wine [62].	Pinot Noir (Australia)	Moderate	
Addition of activated carbon	Activated carbon can remove smoke-derived volatile phenols from wine, with some preliminary evidence suggesting that certain activated carbons might also remove volatile phenol glycoconjugates. This appears effective for treating mildly smoke-tainted wines, but cannot remedy severely tainted wines, and without removal of glycoconjugates, taint might still be perceived. Some activated carbons also strip wine color and/or desirable volatile compounds (aroma and flavors) from wine [58,63,64].	Pinot Noir, Cabernet Sauvignon, Merlot, Chardonnay (Australia)	Moderate	
Addition of glucosidases	Preliminary studies involving addition of glucosidase enzymes to hydrolyze volatile phenol glycoconjugates, enabling the resulting volatile phenols to be more easily removed via other methods of amelioration (e.g., reverse osmosis or activated carbon treatments), offered little evidence of success. More research is needed to evaluate the efficacy of other glucosidases to achieve this purpose [58,65].	Pinot Noir, Cabernet Sauvignon, Merlot, Shiraz, Chardonnay (Australia)	None	
Two cyclodextrin polymers were evaluated and found to be capable of adsorbing from 45 to 77% of four volatile phenols studied. Additionally, CD polymers can be regenerated. The efficacy of the method for removal of volatile phenol glycosides still needs to be assessed [66].		Cabernet Sauvignon (Australia)	Moderate	
Dilution /Blending	Blending or dilution of smoke-tainted wine with a base (unaffected) wine can diminish the intensity of smoke taint to levels that are comparable to the base wine alone. However, the level of dilution required depends on the initial concentration of smoke taint compounds present in the wine [47,67].	Verdelho, Pinot Noir (Australia)	Moderate	

In wine, there may be smoke without fire...

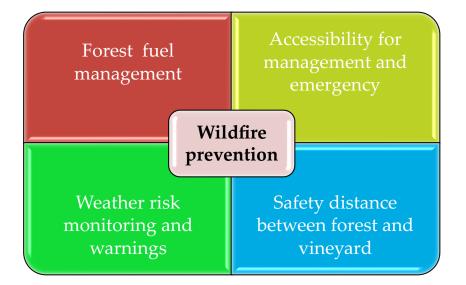
OTHER SOURCES OF SMOKE TAINT MARKERS



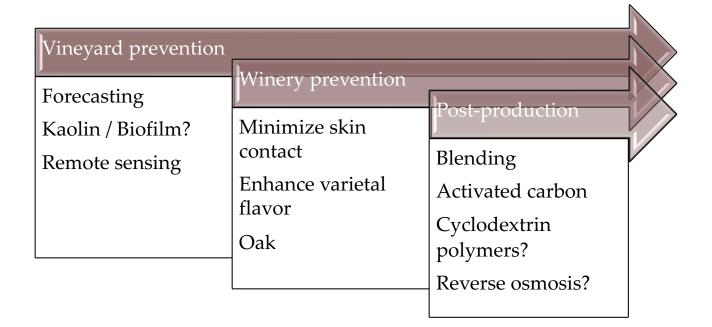
OAK

- Guaiacol
- Methylguaiacol

SMOKE



Methylguaiacol



Pollnitz et al., 2004 Wilkinson et al., 2011 Culbert et al., 2020

NO SILVER BULLET!

CONCLUSIONS AND TAKE-HOME

AVOID WILDFIRES

Adequate forest managent

Keep safe distance

DECREASE UPTAKE

Agricultural biofilms

Cold soak / Limited maceration

REDUCE CONCENTRATIONS

Carbon fining / RO

Blend / Yeast / Oak

WHEN ALL ELSE FAILS

Insurance / Distillation

BREAKING NEWS!

BASELINE DATABASES

Cultivar	Variable	Concentration (µg/kg)								
		SyGG	MSyGG	PhRG	CrRG	GuRG	MGuRG	MeGu	Gu	m
Cabernet	Median	1.7	0.4	0.5	1.3	0.5	0.7	0.0	0.0	0.0
	95% CI for median	1.4-2.1	0.4–0.5	0.3-0.7	1.1–1.5	0.5-0.6	0.6–1.1	n.a.	n.a.	n.a.
Sauvignon	IQR	1.4	0.3	0.7	0.8	0.3	0.8	0.0	0.0	0.0
(n = 44)	Maximum	7.9	1.3	2.6	3.6	2.3	4.0	0.0	2.9	1.0
	99th percentile	7.6	1.1	2.5	3.6	2.2	3.9	1.0	2.9	1.0
Grenache	Median	2.4	0.4	0.6	2.2	0.7	0.6	0.2	0.6	0.1
	95% CI for median	2.0-2.9	0.3–0.5	0.5–0.8	1.7-2.6	0.5-0.8	0.4–0.7	0.2-0.2	0.5–0.8	0.1-
	IQR	2.4	0.2	0.6	1.5	0.4	0.4	0.2	0.6	0.0
(n = 44)	Maximum	7.1	0.8	2.7	4.7	1.8	1.0	0.9	2.4	0.2
	99th percentile	7.0	1.0	2.4	4.7	1.8	1.0	1.0	2.0	1.0
Mataro (n = 25)	Median	2.8	0.2	0.5	2.5	0.5	1.9	0.4	1.3	0.1
	95% CI for median	2.3–3.5	0.2-0.3	0.4–0.6	1.7-2.8	0.4-0.6	0.4–0.6	0.3–0.5	0.8–1.5	0.1-
	IQR	1.7	0.2	0.3	1.2	0.3	1.5	0.2	0.8	0.1
	Maximum	7.4	0.7	1.1	5.4	1.3	5.0	0.6	2.5	0.3
	99th percentile	7.3	1.0	1.1	5.0	1.3	4.7	1.0	2.4	1.0

Coulter, A., Baldock, G., Parker, M., Hayasaka, Y., Francis, I. L., & Herderich, M. (2022). Concentration of smoke marker compounds in non-smoke-exposed grapes and wine in Australia. *Australian Journal of Grape and Wine Research*.

BREAKING NEWS!

ACTIVATED CARBON IN VINEYARDS

Wilkinson, K. L., Ristic, R., Szeto, C., Capone, D. L., Yu, L., & Losic, D. (2022). Novel use of activated carbon fabric to mitigate smoke taint in grapes and wine. Australian Journal of Grape and Wine Research.

Ysadora

Matteo

Christine

Kerry