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Abstract:

Context and purpose of the study – the phenological evolution is a crucial aspect of grapevine growth and
development. Accurate detection of phenological stages can improve vineyard management, leading to better
crop yield and quality traits. However, traditional methods of phenological tracking such as on-site observations
are time-consuming and labour-intensive. This work proposes a scalable data-driven method to automatically
detect key phenological stages of grapevines using satellite data. Our approach applies to vast areas because it
solely relies on open and satellite data having global coverage without requiring any in-field data from weather
stations or other sensors making the approach extensible to other areas.

Material and methods - we leveraged historical phenological observations and developed a supervised
deep-learning model that uses the land surface temperature estimated by the Copernicus Sentinel-3 satellite to
estimate the current phenological stage at the parcel level. We compared the performances of our model with
traditional approach based on Growing Degrees Days (GDD).

Results – we train our algorithm on manually collected phenological observations of four winegrape cultivars in
three European vineyards (Italy, Spain, and Portugal) from 2017 to 2022. Preliminary results indicated that our
deep learning phenology model outperforms the traditional methods based on GDD, decreasing the Mean
Absolute Error from 33.8 to 7.8 days (-76.5%).
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1. Introduction

Phenology monitoring plays a critical role in grapevine cultivation, because it enables growers and vineyard
managers to track the progress of key events in the grapevine life cycle, such as budburst, flowering, fruit set,
veraison and leaf fall. These events are important because they determine the timing of critical operations, such
as pruning, irrigation, fertilization, and pest and disease management that can impact the quality and quantity
of grape yield. With the effects of climate change increasingly impacting the grapevine growth cycle, monitoring
phenology is becoming even more critical. Changes in temperature, precipitation, and other environmental
factors can cause variations in the timing of key phenological stages, which can impact grape quality and yield.
Remote sensing technologies, such as satellite imagery, can provide a cost-effective and scalable way to monitor
phenology across large areas, providing valuable information for growers and vineyard managers to make
informed decisions and optimize their grapevine cultivation practices. Traditionally, phenological analysis has
been conducted through on-site observations, which can be time-consuming and labor-intensive. The recent
advances in satellite remote sensing have opened new possibilities for monitoring phenological changes in
grapevines on a large scale. This study aims to develop a phenology model for grapevines using satellite data.
The most used tools to predict phenology are temperature-driven models. Such models differ in the articulation
between the thermal effects of the dormancy phase and the grapevine vegetative phase, which can be
modeled as sequential, parallel, deepening rest, four phases, alternating etc. (Kramer et al., 1994; Chuine et al.,
2013). Thermal models of the vegetative cycle are based on the occurrence of a given phenological stage
through a sum of temperatures, starting on a pre-defined date and progressing until a given threshold is
reached for each phase. Most models rely on the concept of growing degree-days (GDD) or heat units which are
accumulated from a certain value called the base temperature (lower thermal limit). This value is conventionally
set at 10 °C for grapevine (Winkler, 1995), other authors (Parker et al. 2011) recommended a value of 0 °C.
Despite being very simple models, the degree-day approach also comes with important constraints (Garcia de
Cortazar et al., 2009). More advanced models have been proposed, considering other vineyard information
such as soil moisture and irrigation (Carteni et al., 2019).

2. Material and methods

Plant material and data sources

Plant materials - In this study, we focus on three grapevine (Vitis vinifera L.) cultivar across southern Europe: (i)
‘Aglianico’ cultivated in the province of Avellino (Mastroberardino); (ii) ‘Syrah’ in Aranyó (Familia Torres), which
is located in Catalonia, Spain; (iii) the ‘Touriga Nacional’ collected at the Quinta do Ataíde estate (Symington
Family Estates) , which is located in the Douro Valley region of Portugal.

Plant measurements - Phenology data relative to five stages (bud break, flowering, fruit set, veraison, and
harvest) were collected in the vineyards for the three wine grape cultivars from 2017 to 2022. Budbreak,
flowering, fruit set and veraison were collected using the Baggiolini scale as a reference (Baggiolini et al. 1952).
For Symington, only three phenological stages were collected: budbreak, flowering, and veraison.

Data sources – Copernicus is the European Union's Earth observation programme coordinated and managed by

the European Commission in partnership with the European Space Agency (ESA), the EU Member States and EU

agencies. ESA is currently developing seven missions under the Sentinel programme (Sentinel 1, 2, 3, 4, 5P, 5, 6).

Sentinel 3 provides high-accuracy optical, radar and altimetry data for marine and land services. Since it has

been proven that the phenology has a strict correlation with the accumulated temperature, for this specific use

case, the study focused on the output of SLSTR (Sea and Land Surface Temperature) sensor. The SLSTR thermal

bands used to retrieve LST (Land Surface Temperature) are three infra-red channels S7, S8 and S9 at 3.74 µm,

10.85 µm and 12 µm). The twin satellites Sentine-3A and Sentinel-3B acquire data twice a day in free cloud

conditions with a spatial resolution is 1 km2.
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Deep learning phenology model

Data processing – By gathering the satellite data measurements, it is possible to retrieve the historical time

series of the temperature of the land surface for each Sentinel-3 channel (Figure 1 and Figure 2) in the

considered period 2017-2022. In case of cloudy or misty weather, for example, the values are not reliable since

the Sentinel-3 SLSTR acquires the temperature of the first layer that the wavelength encounters, in such cases

the clouds. In these cases, we face temperatures below a normal range, and they are filtered out. The previous

filtering might generate missing data, which is finally filled by injecting the moving average of the last 7 days.

Moreover, since the first acquisition of the day is often missing (Figure 1), we chose to consider the second

acquisition only (Figure 2) and given the strict correlation between the signal of the three bands (S7, S8, S9), we

selected the band S9 because slightly more reliable in case of high temperature. In fact, S7 and S8 reach the

maximum value in some cases, making their signals unreliable (Figure 1).

Model design - Recurrent Neural Networks (RNN) is a specific class of neural network able to handle time series

keeping memories of the previous inputs (Rumelhart et al., 1985). They adapt well to time series because they

are not limited to the actual input, but they also consider the temporal dependencies with the previous input

values. Among the different RNN architectures, the Gated Recurrent Unit (GRU) (Kyunghyun, et al. 2014) has

proven to perform well in the case of long-time series. We adopt a GRU neural network specific for each variety

and location, which takes the temperature timeseries from January 1st and detects the different phenological

stages. The analysis has been implemented as a classification problem in which every class represents a

different phenological phase. The output is expressed as a binary array containing zeros once the phase has

been reached for each day of the year (Eibe Frank et al., 2001) (Figure 3).

3. Results and discussion

A GRU model with two hidden layers (30 neurons each) for every variety was trained using the AdamW
(Loshchilov, 2017) optimizer and evaluated with 5-fold cross validation, using all data from four years (i.e. 2017,
2018, 2019, 2020) as training samples and one year (i.e., 2021) as test sample, and repeating for all the five
possible combinations, averaging the results (Table 1). The results are compared with the Growing Degree Days
(GDD) (Table 2) which has been calibrated with the same methodology and on the same temperature
measurements from Sentinel-3. The Mean absolute error (MAE) obtained by the GDD is 33.2 days, the MAE
obtained by the deep learning model is 7.8 days, with a reduction of -76.5% of days. The deep learning model
has demonstrated to correlate the available information with the historical phenology data and provided a
result that outperforms the traditional GDD model computed on the same data source, demonstrating the
feasibility and effectiveness of using Sentinel-3 temperature data to monitor the phenological stages of
grapevines. The GDD model assumes a linear relationship between temperature and plant development,
however, this relationship is often not accurate, as plant growth and development are influenced by various
factors, including soil moisture, solar radiation, and atmospheric CO2 levels. The deep learning phenology model
can learn complex and nuanced relationships between temperature and plant development stages and it is able
to compensate the noise and the errors of the data source remaining even after the preprocessing operations.
The approach suffered some limitations, such as the spatial resolution of the measurements (1 km2) and the
sampling frequency (once a day) that cannot give information about the average temperature of the entire day.

4. Conclusions

In this study, we developed a deep-learning phenology model for grapevines using satellite data. Remote
sensing technologies, provide a cost-effective and scalable way to monitor phenology across large areas,
providing valuable information for grape growers and vineyard managers to make informed decisions and
optimize their grapevine cultivation practices. With the effects of climate change increasingly impacting the
grapevine growth cycle, monitoring phenology is becoming even more critical. By using remote sensing
technologies to monitor phenology, growers can monitor vast areas without installing in-field weather stations
and take timely action to mitigate the impact on grape quality and yield. The presented approach could help to
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justify the investment in these technologies for smaller vineyards and growers who may not have the resources
to invest in more traditional, labor-intensive phenology monitoring methods. The results of the study indicate
that the deep learning phenology model using the satellite data is able to monitor the phenological stages of
the grapevine and it outperforms the traditional method based on growing degree days (GDD) computed on the
same dataset decreasing the Mean Absolute Error from 33.8 to 7.8 days (-76.5%). Overall, the use of satellite
remote sensing for phenology monitoring shows great potential to revolutionize the grape-growing industry
and help growers to adapt to the challenges of climate change.
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Table 1 Mean absolute error of the deep learning model. It is computed as the absolute value of temporal distance in days
between the outcome of the models and the phenology date observed on field.

MAE (Days, average of 5 folds) Bud break Flowering Fruit-set Veraison Harvest Average

Aranyó Syrah 12.2 6.4 6.2 11.2 7.6 8.7

Ataíde
Touriga
Nacional

15.0 7.0 - 8.6 - 10.2

Mirabella
Eclano

Aglianico 8.2 4.6 2.8 1.6 5.8 4.6

Average 11.8 6.0 4.5 7.1 13.4 7.8

Table 2: Mean absolute error of Growing Degree Days used as a baseline. It is computed as the absolute value of temporal
distance in days between the outcome of the models and the phenology date observed on field.

MAE (Days, average of 5 folds) Bud break Flowering Fruit-set Veraison Harvest Average

Aranyó Syrah 14.0 16.8 33.0 65.0 54.0 36.6

Ataíde
Touriga
Nacional

16.0 13.2 - 47.8 - 25.6

Mirabella
Eclano

Aglianico 11.0 11.0 26.0 41.8 61.8 30.3

Average 13.6 13.6 29.5 51.5 57.9 33.2

Figure 1: Temperature acquired by Sentinel-3 during the first acquisition of the day in the Torres vineyard. The Sentinel-3
thermal bands are three (S7, S8 and S9 at 3.74 µm, 10.85 µm and 12 µm wavelength respectively)

Figure 2: Temperature acquired by Sentinel-3 during the second acquisition of the day in the Torres vineyard. The Sentinel-3
thermal bands are three (S7, S8 and S9 at 3.74 µm, 10.85 µm and 12 µm wavelength respectively)
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Figure 3 Deep learning inference pipeline
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