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Abstract:

Context and purpose of the study – Vineyards face climate change, increasing temperatures, and drought affecting
vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it
is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.
However, when field measurements, such as stem water potentials (SWP), can be precise, they are
time-consuming. In addition, they do not allow for easy assessment of spatial variability, which is a critical factor for
water status management. Remote sensing tools can help map plant water status in space and time and streamline
data acquisition over whole vineyards several times during the season. In this project, we monitored a variably
irrigated vineyard several times during the season with a hyperspectral NIR/SWIR camera mounted on a UAV.

Material and methods – We worked in a Cabernet Sauvignon vineyard in the San Joaquin Valley of California
equipped with an automated irrigation system. We created forty-eight independent watering zones and applied
twelve different amounts of water replicated four times in a randomized block scheme. Water amounts were
fractions of the grower allocation and applied as sustained and regulated deficit irrigation strategies. Hyperspectral
images in 112 bands from 900 nm to 1700 nm were collected using a UAV every two weeks from June to harvest.
Contemporarily, we measured vine water status through SWP, stomatal conductance (gs) and net assimilation (AN).
For the analysis, the images were segmented to extract the canopy signal and converted to reflectance, then used
to predict the field water status measurements using machine learning models. Models were evaluated using
coefficients of determination (R2), and root mean square error (RMSE). Feature importance was also computed to
determine the importance of each band in the model.

Results – Field measurements of stem water potential ranged from -2.0 to -1.14 MPa. The canopy signal was
segmented from the soil background using a classifier with an accuracy of 99.7%. We tested random forest,
gradient boosting machine, and support vector machine algorithms in a preliminary analysis to predict SWP values.
The most performant model was the random forest, and it was able to predict SWP values with an R2 of 0.6 and an
RMSE of 0.1 MPa as assessed in a 5-fold cross-validation procedure. The most important bands for model
prediction were 1146 nm, 1153 nm, 1321 nm, 1363 nm, and 1434 nm, all situated in water absorption domains.
These promising results demonstrate that SWIR images can monitor the field’s vine water status and inform
irrigation management with high resolution.
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1. Introduction
Grapevine production is highly dependent on efficient water management, and traditional tools like the pressure
chamber have been used for decades to make plant-based irrigation decisions (Levin et al., 2021). However, in
recent years, sensing (Bellvert et al., 2015; Brillante et al., 2015) and modeling approaches (Brillante et al., 2016a)
have gained popularity. It has been found that water status, regulated through deficit irrigation strategies,
significantly affects grape quality and production performance (Brillante et al., 2017; Yu et al., 2020;
Martinez-Luscher et al., 2017; Brillante et al., 2018). On the other hand, sustained deficit irrigation is a technique
where vines are watered at a constant deficit regardless of their phenological stage. If executed optimally, deficit
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irrigation can improve fruit quality and sustainability without negatively impacting yield (Edwards et al., 2013).
Furthermore, novel systems that enable variable irrigation at the local scale can be used to adapt water schedules
to individual rows, resulting in improved return on water usage. These systems require new solutions to determine
the required amount of water for plants with higher spatial resolution.
Even though grapevines are capable of withstanding drought conditions, prolonged or severe irrigation deficiencies
can cause physiological changes that affect their physical and chemical composition (Maimaitiyiming et al., 2020).
Remote sensing imagery can be used to detect these changes, with alterations in cell structure observable in the
NIR domain (De Bei et al., 2011) and changes in water content impacting the SWIR domain (Kandylakus et al.,
2020). Hyperspectral imaging offers the combined power of spectral and spatial information, which can be
leveraged to evaluate vine water status. Previous studies, such as Kandylakis et al. (2020), have shown that
UAV-based SWIR reflectance is useful for measuring grapevine stomatal conductance. Additionally, Laroche-Pinel et
al. (2021) found that satellite-based NIR and SWIR reflectance at 10-20 m resolution can be used to predict
grapevine stem water potential, although better pixel resolution can be achieved through UAV acquisition. It is
important to note that both studies were conducted outside of the United States, indicating a regional gap in the
literature.
As the use of agricultural remote sensing continues to promote economic and environmental growth through
improved resource management decisions, concerns remain regarding the interpretation, cost, and accuracy of
unmanned aircraft vehicles (drones) and their corresponding sensors (Khanal et al., 2020). In this study, a
commercial vineyard block was subjected to twelve irrigation regimes to introduce local-scale variability in water
potentials. This added to a ground-based dataset of plant water potentials and their spectral signatures, which was
then utilized to train a machine learning model to predict the water status of grapevine plants in hyperspectral
images with 112 narrow band-wavelengths in both the Near-Infrared (NIR) and Short-Wave-Infrared (SWIR)
domains.

2. Material and methods
Experimental design - The experiment was carried out in Cantua Creek, California (36.50745° N, 120.29715° W) on

a commercial vineyard growing Cabernet Sauvignon grapes. The study area covered 144 vineyard rows, and the

experimental design involved twelve treatments that were replicated four times in a randomized block design. Each

block consisted of three rows with three buffer rows separating them. On each row, four treatments were applied

to ten vines, and samples were collected from the four central vines. Four treatments were irrigated with sustained

deficit irrigation at 100, 80, 60, and 40% of the adjusted control (grower allocation). The remaining eight

experimental zones were subjected to regulated deficit irrigation treatments and were irrigated differently "pre"

and "post" veraison. Variable deficit irrigation was applied in weekly sets ranging from 8-20 hours. All 192

experimental vines were GNSS sampled and tagged.

Plant measurements - The Stem Water Potential (SWP) was measured using a pressure chamber (Scholander et al.,

1965) on one leaf per vine from a mature main shoot, which was bagged in Mylar® 30 minutes prior to removal to

allow for leaf equilibration, following the sampling procedure in Brillante et al. (2016b). The plants were sampled

three times between June 15, 2022, and August 3, 2022, with the 48 replicates measured on each of the three

dates.

Images acquisition - Flight and ground data were conducted simultaneously. The DJI Matrice 600 Pro drone and the

Specim AFX-17 hyperspectral camera, capable of capturing images in 112 bands from 900-1700 nm, were used in

the study. The captured images were classified into three categories, namely, vine (99.7% accuracy), shadow, and

inter-row using perClass Mira (perClass BV, NL). The vine class was then extracted from the classification mask and

cropped to the extent of the 48 experimental zones. The mean radiance was then obtained from each zone for all

three sampling dates.

Analysis - The extracted radiance was utilized to predict SWP values via a machine-learning model. The Random

Forest (RF) selection function wrapped by Recursive Feature Elimination (RFE) was employed to determine the
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top-performing feature subsets (Kuhn., 2019). The predictor features were then evaluated for variable importance

using a k-fold cross-validation resampling method conducted thrice.

3. Results and discussion

The plant's SWP values had a range of -1.74 to -1.18 MPa, with a mean of -1.55 MPa (Figure 1). Based on this initial
investigation, the optimal model predicted SWP values with an R-squared (R2) of 0.52 and a root mean square
error (RMSE) of 0.12 MPa (Figure 2).
Improvements can still be made in predicting SWP using SWIR hyperspectral data. Further work can be conducted
to eliminate any potential noise in the hyperspectral data and to compute the conversion in reflectance using
different methods. Moreover, larger datasets can lead to better training and prediction performance, and our
research is still ongoing.
It may be possible to classify the observed and predicted SWP values into three categories based on their
distribution: High stress (SWP < –1.6 MPa), stress (–1.6 MPa < SWP < -1.4 MPa), and no stress (SWP > -1.4 MPa).

The most significant features were the radiance values at 1433.76 nm, 1497.5 nm, 1504.59 nm, 1490.41 nm,
1525.89 nm, 1518.79 nm, and 1511.68 nm, as determined by the top five important features.
The model was able to select the most effective predictive feature wavelengths for estimating SWP, which are
located within the water absorption domains as shown in previous research (Kandylakis et al., 2020; De Bei et al.,
2011; Laroche-Pinel et al., 2021).

4. Conclusions

The initial findings of this study are encouraging, and ongoing efforts are being made to enhance the model. This
research is one of the pioneering studies that employs SWIR hyperspectral data obtained from a UAV to forecast
vine water status. To improve the predictive accuracy, it is necessary to collect more data by adding additional
sampling dates during other growing seasons to validate and strengthen the predictive performance.
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Figure 1: Variability of SWP values for full dataset

Figure 2: The predicted and observed SWP values for the repeated cross-validation
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