
GiESCO 2025 – Hochschule Geisenheim University (Germany) – 27-31 July 2025

IVES Conference Series | by IVES 1

EXTENDED ABSTRACT

Estimating grapevine crop coefficients at high 
resolution using open-source satellite

Hankun Luo1, Diego Roy Guevara Torres1, Vinay Pagay1

*Corresponding author: vinay.pagay@adelaide.edu.au
1 School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia 5064

Keywords: irrigation scheduling, crop coefficient, satellite, spectral unmixing

INTRODUCTION 

Climate change results in increasing water stress due to 
co-effects of rising evapotranspiration (ET) and decreased 
precipitation over the past 65 years (Spinoni et al. 2019). 
Though mild water deficits can improve fruit and wine 
quality, severe shortage of water to grapevines negatively 
influences both grapevine productivity and fruit quality (van 
Leeuwen et al. 2024). To address these adverse drought 
effects on grapevines, one direct and effective solution is 
the application of supplemental irrigation with appropriate 
schedules (Schlank et al. 2024). For winegrapes, ET-based 
irrigation scheduling has shown to result in higher yields, 
bunch numbers, and crop water use efficiency, compared to 
other methodologies like grower’s experience and soil-based 
measures (Schlank et al. 2024).  
The ET method measures evaporation from soil and 
transpiration from vegetation. Crop evapotranspiration (ETc) 
can be computed according to derived formula (Allen et al. 
1998):  

𝐸𝑇𝑐 = 𝐸𝑇0 × 𝑘𝑐 
ET0 is the ‘Reference ET’, which represents the rate of 
evapotranspiration from a reference surface, often a 10 cm 
tall grass, and can be calculated via the Penman-Monteith 
model (Allen et al. 1998), with data commonly obtained 
from automatic weather stations. A key parameter in the ETc 
computation is the crop coefficient (kc), a dimensionless 
parameter related to the canopy size and leaf area, and is 
highly variable during the growing season due to varying 
canopy structure, fraction of ground covered by vegetation, 
training system, and pruning level, amongst others (Pereira 
et al. 2020). 

Compared to other time-consuming, costly, cumbersome and 
often single-point or small-scale kc measurement methods 
like lysimeter or flux tower, remote sensing (RS) has high 
temporal flexibility and broader spatial representativeness 
by capturing structural, spectral, thermal, or microwave 
information from land covers (Gautam and Pagay 2020, 
Gautam et al. 2021). Amongst the mainstream RS platforms 
including Manned Aircraft System (MAS), Unmanned 
Aerial Vehicle (UAV), satellites provide low-cost, long-term 
time-series data with broad spatial coverage, which benefits 
regional predictive analysis (Gautam and Pagay 2020, Govi 
et al. 2024). Airborne platforms, by contrast, are more 
challenging to operate and collect data at such a large scale. 
Additionally, the similarity between kc and satellite-derived 
vegetation indices has driven the use of low-cost remote 
sensing technologies to estimate kc across various spatial and 
temporal scales (Gautam et al. 2021).  
The current limitation of using satellite data is the low 
resolution of the dataset; typical pixel sizes or ground 
sampling distances (GSD) are greater than the area occupied 
by a single grapevine canopy.  Furthermore, vineyard 
inter-rows are often covered by non-vine vegetation such 
as cover crops or weeds (Gautam and Pagay 2020), which 
result in a ‘mixed’ satellite pixel that contain a combination 
of grapevines, bare soil, weeds, and/or cover crops, all of 
which add “noise” to the vine spectral signal (Govi et al. 
2024). Separation of land cover types to obtain specific VI 
values can help to improve the accuracy of RS kc predictions 
(Quintano et al. 2012). To the best of our knowledge, there 
are no reports on unmixing data of low- to medium-spatial-
resolution satellite data for grapevine kc computation. This 
study aims to fill this gap.  

RESEARCH OBJECTIVES 

This study aims to explore the use of remote sensing (RS) 
methods which utilizes free medium-spatial-resolution 
satellite data (Sentinel-2 imagery) to improve kc estimation 
accuracy, enabling more affordable precision irrigation. Our 
work addresses challenges associated with relatively small-
sized agricultural lands such as vineyards, where their row 
and plant spacing, being smaller than the satellite’s GSD, lead 
to spectral index “mixing.” Leveraging spectral unmixing 
techniques and machine learning, this study discusses how 

to solve significant discrepancies between the actual values 
for grapevines and the spectral indices derived from satellite 
mixed pixels, and highlights how to offer a cost-effective 
solution for irrigation-scheduling and precision irrigation in 
vineyards and other irrigated crops.  
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MATERIAL AND METHODS 

Vineyard site 

The ROI for this study is situated in Alex 88, Coonawarra, 
Limestone Coast zone, South Australia. It is a Cabernet 
Sauvignon vineyard of the Wynns Coonawarra Estate 

(37°17’08.500” S, 140°49’37.900” E). We had one 
experimental block (approx. 1 ha), in which we had 32 
sampling points for ground data collection and RS analysis.  

Satellite data acquisition and pre-processing 

The satellite multi-spectral imagery is sourced from the 
Harmonized Sentinel-2 MSI: Multispectral Instrument, 
Level-2A (Stl-2), provided by the EU/ESA/Copernicus 
program. We accessed the Stl-2 dataset (“COPERNICUS/
S2_SR_HARMONIZED”) via Google Earth Engine 
(GEE). The GEE offers an interactive code editor, where 
we developed scripts to perform band math and time-
series analysis. To eliminate the interference of clouds and 
shadows, we first filtered and cloud-masked the dataset by 
s2_cloudless approach, incorporating the cloud probability 
dataset to improve cloud detection accuracy. To correct the 
potential image ‘shift’ error due to position and orientation 
(pose) during satellite image collection, we applied 
‘buffering’ to add a margin of tolerance around sampling 
points and avoid data omission due to shift errors. Based on 

Sentinel-2’s resolution, we manually created circles centred 
on each sampling point with a radius of 10 meters. The 
median value of the pixels covered by the circle was then 
calculated. For the vegetation index, we selected Normalized 
difference vegetation index (NDVI). It is reported that NDVI 
has a strong relationship with kc (Gautam and Pagay 2020) 
and the bands (red and near infrared) used to calculate 
NDVI have highest spatial resolution in Stl-2 compared to 
other bands. Sampling times were based on the phenological 
phases reported for the Coonawarra region in Longbottom et 
al. (2022). We collected spectral data within the ROI from 
December to February for the 2019/20 and 2020/21 seasons, 
covering from flowering to véraison, and pre-harvest, which 
were downloaded as raster files.  

UAV data acquisition 

All high-resolution images were captured by a UAV 
(DJI Matrice 600 Pro, Da-Jiang Innovations Science and 
Technology Co., Ltd., Shenzhen, China). The images were 
collected over three vintages—2018/19, 2019/20, and 

2020/21—and align with the same months as the satellite 
data. For details on UAV flight and photography, refer to 
Gautam et al. (2021).  

Ground-truthing data 

Ground measurements of kc were estimated using the Paso 
Panel. The methods and formulas used can be found in 
Gautam et al. (2021).  

Spectral unmixing 

To separate the grapevine NDVI from mixed pixels, we 
performed linear spectral unmixing. First, using high-
resolution imagery in ArcGIS Pro (version 3.1.0), we applied 
a random tree classification (maximum number of trees = 50, 
maximum tree depth = 30, maximum number of samples per 
class = 1000). The classified result was then processed with a 
“fishnet” segmentation and ‘zonal statistics’ (counted sum of 
pixels in every grid) to calculate the proportion of grapevine 
area within each fishnet cell for each sampling point. Raster 
data of NDVI were also incorporated to ArcGIS for unmixing 
calculations according to the following formula (Quintano et 
al. 2012):  

𝑁𝐷𝑉𝐼𝑚𝑖𝑥𝑒𝑑 = 𝑓𝑔𝑟𝑎𝑝𝑒 × 𝑁𝐷𝑉𝐼𝑔𝑟𝑎𝑝𝑒 + 𝑓𝑠𝑜𝑖𝑙 × 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙 
+ 𝑓𝑐𝑐 × 𝑁𝐷𝑉𝐼𝑐𝑐
Where f = fraction of area, cc = cover crops. Due to the 
lack of in-situ NDVI measurements for cover crops and 
soil, we found “reference points” for these two land cover 
types. We ensured that the reference soil matched the type 
in Alex East (B4) and selected nearby grassland as the cover 
crop reference. Using Google Earth Engine (GEE), we 
downloaded the time-series NDVI data for these reference 
points over five years (2019-2024) as the representative 
NDVI for soil and cover crops for different growth stages in 
the linear unmixing process.  

Modelling and validation 

For the two vintages, a total of 192 unmixing NDVI data 
points were collected. These data were randomly split into 
training and testing sets at a 7:3 ratio for model validation. 
Using R Studio (2024 09.0 for Windows), we first 
separated the data by year, then combined them to analyse 
linear correlations between variables with a correlogram. 
Subsequently, we applied a simple linear model reported 

by Trout and Johnson (2007), as well as a Random Forest 
Regression (Gautam et al. 2021), to train and test all data. 
Model performance was evaluated using R squared (R²), 
Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE); for linear regression, Akaike Information Criterion 
(AIC), and Bayesian Information Criterion (BIC) is added as 
effectiveness indicators.  
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RESULTS 

There were notable differences in the correlations between 
variables in 2020 and 2021 vintages. In the 2020 correlogram 
(Figure 1a), higher unmixed NDVI generally corresponded 
to higher kc values (r = 0.347, p < 0.01), whilst in the next 
vintage (Figure 1b), this positive correlation was weakened 
significantly in both strength and statistical significance (r 
= 0.133, p > 0.05). Mixed NDVI displayed a similar trend 
with kc in 2020, though the statistical parameters were 
stronger and more significant (r = 0.617, p < 0.001) than 
that of unmixed values. However, during the 2021 growing 
season, mixed NDVI exhibited a negative correlation with 
kc, with low statistical significance (p > 0.05). The seasonal 
relationship between our computed canopy area (c_area) and 
kc also exhibited differences. In the comprehensive chart 
(Figure 1c) which evaluates the correlation relationships of 
each variable (kc, NDVI, and unmixed NDVI) across both 
vintages, crop coefficients had trends more closely aligned 
with the 2020 result.  
The results indicate a high level of heterogeneity in the 
vineyard, as evidenced by the UAV RGB imagery. We 
observed varying levels of weed cover vigour around different 
sampling points across months. Additionally, factors such 
as vine shadows, the mosaic of bare soil and grass cover, 
and discarded grape clusters from thinning all interfered 
with spectral unmixing. Furthermore, at the same sampling 
point, differences in leaf color intensity, canopy density, and 
other vine characteristics were evident across years. These 
variabilities also support our later findings in modelling. As 

Table 1 indicates, due to its relative robustness, mixed NDVI 
demonstrates higher accuracy (R2 = 0.224) in predicting kc 
than unmixed NDVI (R2 = 0.049) within the linear model; 
but the overall performance of the linear model remains 
suboptimal (R2 of all groups are low than 0.3), which reveal 
the sensitivity of linear model to high heterogeneity in 
vineyards.   
On the other hand, more complex machine learning models, 
like Random Forest (RF), demonstrated strong adaptability to 
variability (Table 1). Gonzalo-Martín and colleagues (2017) 
pointed out that RF offers several key advantages over other 
well-known classifiers. Its non-parametric nature allows 
flexibility across various datasets, and it often achieves 
higher classification accuracy than traditional classifiers 
when suitable attributes are selected for training pattern 
characterization. Additionally, RF can identify feature 
importance, enhancing interpretability, and it demonstrates 
robustness against imbalanced class distributions.  
In the RF model (Table 1), unmixed NDVI showed a 
much stronger ability (R2 = 0.771) to predict kc compared 
to mixed NDVI (R2 = 0.621), indicating that spectral 
unmixing contributed to improving the model’s performance. 
Additionally, the addition of canopy area as a model 
parameter significantly improved the performance of the kc 
model based on mixed NDVI (R2 = 0.819), bringing it closer 
to that of the unmixed NDVI model with the same leaf area 
inclusion (R2 = 0.846).  

CONCLUSION 

We found that spectral unmixing and machine learning 
approaches improved kc predictions based on satellite remote 
sensing of vineyards. For a vineyard with high temporal and 
spatial heterogeneity, linear models may be insufficient for 
accurate generalization; in contrast, more complex machine 
learning models, such as Random Forest, can better adapt 

to the variability within the vineyard. Additionally, remote 
sensing (RS) data combined with grapevine canopy structural 
information (e.g. canopy area) resulted in improved model 
performance, which suggests that simple field measurements 
of the canopy may offer a cost-effective approach for RS 
irrigation scheduling and precision irrigation in vineyards.  
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TABLE AND FIGURE

Table 1. Comparison in model performance of kc prediction.
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Figure 1. Correlograms of variables in (a) 2020, (b) 2021, (c) total. In this figure, c_area = canopy area, ndvi_mix = NDVI of 
mixed pixel, ndvi = unmixed NDVI of grapevines, Kc = crop coefficient; the number under each variable indicates Pearson 
value (r), and * denotes statistical significance (p-value), where *, p < 0.05; **, p < 0.01; ***, p < 0.001.   
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