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INTRODUCTION 

The accurate estimation of yield is a fundamental for suitable 
viticulture, playing a pivotal role in the planning of logistics, 
the allocation of resources and the formulation of commercial 
strategies. The capacity to make yield projections enables 
producers to anticipate market demands and optimize 
operations, enhancing both efficiency and sustainability 
(Komm & Moyer, 2015). However, the intrinsic spatial 
and temporal variability of yield in vineyards presents 
considerable challenges to the collection of representative 
and precise data (e.g., Bramley and Proffitt 1999; 
Clingeleffer et al. 2001; Carrillo et al. 2015). Historically, the 
yield estimation has been dependent on manual techniques, 
such as the counting of bunches on a restricted sample of 
vines and the extrapolation of results to the entirety of the 
vineyard. Despite their widespread use, these techniques 
have notable limitations. They are costly in terms of labour 
and time, and they are prone to sampling errors due to the 
lack of representativeness, particularly in large or spatially 
heterogeneous vineyards (Dami, 2011). 
To address these shortcomings, advanced techniques have 
been developed that integrate historical data and refined 
sampling designs. For example, Araya-Alman et al. (2019) 
proposed a methodology based on historical yield patterns 
to identify key sampling areas, thereby reducing estimation 
errors. Similarly, Oger et al. (2021) investigated the potential 
for optimising the number of sampled vines to minimise 
errors, emphasising the value of systematic approaches 
for more accurately capturing spatial variability. The 
adoption of emerging technologies has further transformed 
yield estimation practices. Torres-Sánchez et al. (2021) 

demonstrated how unmanned aerial vehicles (UAVs) 
equipped with high-resolution cameras and photogrammetric 
point cloud analysis can provide detailed spatial data on 
cluster distribution across extensive vineyard areas. In a 
further development of the techniques described above, 
Meyers et al. (2011) devised a dynamic spatial optimisation 
model which enhances the representativeness of the samples 
taken while reducing the costs of the operation. Moreover, 
Nuske et al. (2011) implemented computer vision algorithms 
for automated cluster detection and counting, thereby 
eliminating the necessity for destructive sampling. The 
integration of machine learning has expanded the scope of 
these technologies. Palacios et al. (2023) applied computer 
vision and machine learning to enable early yield predictions 
across different grapevine varieties, facilitating adaptive 
management strategies early in the growth cycle. Similarly, 
Íñiguez et al. (2024) developed deep learning models capable 
of detecting grape clusters even under complex occlusion 
conditions, improving data accuracy in challenging 
environments.
In this context, all these new methodologies and technologies 
can help to optimise the sampling strategy. To achieve a 
satisfactory yield estimation from punctual measurements, 
the number of measurements must reflect the expected yield 
variance at the desired scale. However, field measurements 
represent a significant effort in terms of labour and time, 
logistics and cost associated with equipment and the 
technology used. Therefore, a proper definition of sampling 
size is a key aspect of the success of the yield estimation 
approach used.

RESEARCH OBJECTIVES 

The objective of this study is to evaluate the impact of sample 
size on the accuracy of grape yield estimation, focusing on 
how smaller sample sizes affect estimation errors related 
to yield components (in this case the number of bunches 
per vine). Additionally, the study aims to provide practical 
recommendations for improving yield component sampling, 
considering the inherent spatial variability of the vineyard 
blocks. It also seeks to assess manual bunch counting as 
a tool for yield prediction, examining its strengths and 

limitations while identifying areas for refinement to enhance 
both accuracy and efficiency. By achieving these goals, the 
research intends to establish a framework that integrates 
traditional methods with modern, data-driven approaches, 
offering valuable insights for optimizing yield estimations in 
commercial viticulture.
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MATERIAL AND METHODS

Experimental sites

The study was conducted during the 2023 growing season 
in three dryland commercial vineyards of Vitis vinifera cv. 
Tempranillo in the Rioja wine appellation, Spain. The vineyard 
blocks were selected for its contrasting topographical and 
agronomic features.
– Block 1: Total area of 16.3 ha, with 1.02 ha studied. Double 
Royat cordon training system, 2.5 m × 1.2 m spacing, north-
south orientation, 545 m altitude, and 1.7% slope.

– Block 2: Total area of 22.21 ha, with 1.1 ha studied. Double 
Royat cordon training system, planting configuration of 2.5 
m × 1.1 m, north-south orientation, 522 m altitude, and 8.7% 
slope.
– Block 3: Total area of 7.94 ha, with 1.06 ha studied. Double 
Royat cordon training system, planting configuration of 2.5 
m × 1.1 m, north-south orientation, 507 m altitude, and 3.5% 
slope.

Sampling strategy

To assess the impact of sample size on yield estimation 
components yield, manual bunch counting was performed in 
the three vineyards blocks, as reference measurement. Each 
vineyard block was divided into subplots termed “Mini-
plots” and “Micro-plots” to ensure representativeness of the 
sampled area. The mini-plots, corresponding to the study 
area described earlier (approximately one hectare of the 
total plot area), comprised 25 to 40 rows of vines, depending 
on the shape of the vineyard blocks. Each micro-plot was 
subdivided into five rows within each mini-plot, providing an 
additional level of detail for analysis.
Sampling was conducted systematically to balance spatial 
distribution and operational feasibility. In the mini-plots, the 
first vine of each panel was sampled, starting from the first 
vine to the right of the post. Border panels were excluded to 
minimize edge effects. In the micro-plots, all vines within 
each row were sampled, except for those in the border 
panels. For each sampled vine, the number of bunches was 
manually recorded, and the data were carefully documented 
for subsequent statistical analysis.

– Block 1: 450 vines in the mini-plot and 360 vines in the 
micro-plot, totalling 810 vines monitored (40 rows in the 
mini-plot and 5 rows in the micro-plot, with approximately 
12 panels sampled per row).
– Block 2: 350 vines in the mini-plot and 420 in the microplot, 
totalling 770 vines monitored (20 rows in both the mini-plot 
and micro-plot, with between 5 and 20 panels sampled per 
row).
– Block 3: 250 vines in the mini-plot and 350 in the micro-
plot, totalling 600 vines monitored (25 rows in the mini-plot 
and 5 rows in the microplots, with approximately 10 panels 
sampled per row).
In total, 1,050 vines were sampled in the mini-plots and 1,130 
in the micro-plots, generating a total dataset of 2,180 vines 
across the three vineyard blocks. This systematic sampling 
approach ensured the inclusion of spatial variability across 
different vineyard sections, providing robust data for 
statistical analysis and precise yield estimation.

Simulations

Simulations were conducted to assess the impact of sampling 
size on the accuracy of yield estimation in vineyards. 
Specifically, the error associated with different sampling 
intensities (1%, 3%, 5%, and 10%) was evaluated for 
estimating the total grape bunch production in three vineyard 
plots. Manual bunch counts per vine were used as the ground 
truth. For each plot, 100 random sampling simulations without 
replacement were performed at each sampling intensity. 
In each simulation, the total production was estimated by 
extrapolating the mean bunch count of the sampled vines to 
the total number of vines in the plot. A customize code was 
written in MATLAB to perform the simulations.

The estimation error (EE) was calculated as a percentage 
using the following equation: 

EE = (EP – AP)/AP x 100          (1)
where EP is the estimated production (Kg), and AP is the 
actual production (Kg). EP and AP are defined as cumulative 
values considering the total number of vines monitored.
The EE values were visualized using bar plots to illustrate 
the variability in estimates as a function of sampling 
intensity. This analysis provides insights into the relationship 
between sampling size and estimation accuracy, enabling 
the identification of the minimum sampling size required to 
achieve reliable yield estimates with low error margins.

Statistical analysis

Descriptive statistics were used to summarize the EE values 
for the different sampling sizes (1%, 3%, 5%, and 10%). For 
each sampling scenario, the mean and standard deviation of 
the errors were calculated over 100 iterations per plot. These 
metrics provided a comparative overview of the variability 
and accuracy of the yield component estimates. The analysis 
focused on evaluating how sampling size influenced 

the precision of the predictions. All computations and 
visualizations were performed using MATLAB and Python 
libraries, including pandas and matplotlib.
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RESULTS

Variability analysis

The variability in bunch counts among the three vineyard 
blocks was high reaching a 74.3% of CV in the Block2, 
underscoring the heterogeneous nature of grape production. 
Descriptive statistics (Table 1) show disparities in mean 
bunch counts, ranges, and relative variability as indicated 
by the CV. Block 1 presented the highest mean bunch count 
(9.82 bunches per vine) and a relatively controlled CV% 
of 39.6. Despite this, the wide range of 22 bunches (1–23) 
highlights notable localized variability. Block 2, presented the 
lowest mean (6.43 bunches per vine), exhibited the highest 
variability (CV = 74.3%), indicating substantial heterogeneity 
likely influenced by environmental or agronomic factors. Its 
wide range (1–23) further emphasizes the need for intensive 
sampling. Block 3 showed intermediate values, with a mean 
of 7.85 bunches per vine and a CV of 49.1%. While its 
narrower range of 19 bunches (1–20) suggests more uniform 
production compared to Block 2, significant variability 
persists.

Graphical analyses using histograms with smoothed density 
curves (Fig. 1a) further illustrate this variability. Block 1 
demonstrates a relatively symmetrical distribution around the 
mean (~10 bunches) but with notable dispersion, reflecting 
moderate variability. Block 2 displays a more dispersed 
and asymmetric distribution centred around lower values 
(~5 bunches), consistent with its high CV. Plot 3 exhibits 
a slightly more balanced distribution around its mean (~8 
bunches) but still retains variability, as indicated by its range. 
Fig. 1b shows an example of the spatial variability of the 
number of bunches per vine in Block 1, where we can see 
again a confirmation of the high level of variability with a 
relatively random spatial pattern. These findings underscore 
the substantial spatial variability present in all study blocks 
and highlight the necessity of robust sampling strategies 
to account for heterogeneity and ensure accurate yield 
estimations.

Sample size effect 

Simulation results for all three blocks demonstrated a 
clear inverse relationship between sampling size and yield 
estimation error (Figure 2). Sample sizes from 1% to 10% 
of the block area were assessed, with errors calculated as 
deviations from actual yield data. Smaller sampling sizes 
consistently resulted in higher estimation errors, often 
exceeding ±40% at 1% sampling. This effect highlights 
the difficulty of adequately capturing vineyard variability 
with minimal samples. Errors narrowed significantly as 
the sampling size increased, reaching below ±20% at 3% 
sampling and below ±15% at 5%. At the largest sampling 
size (10%), errors stabilized below ±10%, yielding highly 
accurate predictions across all blocks.
While general trends were consistent, Block 2 showed 
greater variability in estimation errors compared to Blocks 
1 and 3, particularly at smaller sampling sizes. This reflects 

its higher inherent heterogeneity, necessitating more robust 
sampling strategies. In contrast, Blocks 1 and 3 exhibited 
relatively more uniform error distributions, with Block 3 
achieving slightly better accuracy at larger sampling sizes. 
These differences present a clear indication of the importance 
of tailoring sampling strategies to each vineyard’s specific 
spatial variability.
Larger sample sizes significantly enhance accuracy but 
must balance against operational constraints like labour and 
time. Sampling sizes of at least 5% emerge as a practical 
compromise for manual data acquisition, providing reliable 
yield estimates while maintaining efficiency. Automatic data 
acquisition with cameras mounted in robots or other vehicles 
supported by AI models for bunch counting can provide 
powerful support for improving the sample size in order to 
reach a higher level of accuracy in yield estimation. 

CONCLUSION

This study demonstrates the critical role of sample size 
in achieving accurate yield estimations in commercial 
vineyards. Sample sizes exceeding 10% of the plot area 
significantly reduced estimation errors, providing reliable 
predictions for vineyard management. With the levels of 
spatial variability presented in the studied blocks, a sample 
size of 1%, commonly used in viticulture, can lead to an error 
range of ±60% which implies serious problems when this 
information is used for strategic decision-making.

While manual bunch counting proved effective, its accuracy 
is highly dependent on the spatial variability of the block and 
sampling strategy. The results obtained in this study give us 
useful insights into optimizing vineyard sampling strategies 
accounting for spatial variability, in order to achieve accurate 
yield estimations. Future research should focus on integrating 
traditional methods with emerging technologies such as 
remote sensing and machine learning to enhance prediction 
accuracy increasing the sample size. This approach holds 
potential for improving precision viticulture practices, 
aligning with industry goals of sustainability and efficiency. 
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TABLE AND FIGURE

Table 1. Descriptive statistics of bunch counts for the three vineyard blocks.

Figure 1. (a) Distribution of bunch counts across the three vineyard plots. Histograms combined with smoothed density curves 
illustrate the variability in bunch counts for Block 1 (blue), Block 2 (grey), and Block 3 (yellow), highlighting differences in 
distribution and heterogeneity; (b) Spatial Variability of the Number of Bunches per Vine in Block 1.
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