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Abstract:

Context and purpose of the study - Vineyard yield estimation brings several advantages to the entire wine
industry. It can provide useful information to support decision making regarding bunch thinning practices,
harvest logistics and marketing strategies, as well as to manage stored wine and cellar tanks allocation. Today,
this estimation is performed mainly using manual methods based on destructive bunch sampling. Yield
estimation using image analysis has the potential to perform this task extensively, automatically and
non-invasively. However, bunch occlusion, caused mainly by leaves, presents a great challenge to this approach.
This occlusion is highly dependent on canopy porosity, which in turn is affected by factors such as vigor, shoot
density and leaf area, water availability, biotic and abiotic stresses, among others. In this work, the results of an
image-based yield estimation method that estimates bunch occlusion by leaves using canopy porosity data, are
compared with a manual approach.

Material and methods - The trial was carried out in two vineyards located within Lisbon winegrowing region,
over four years (2018-21). Spur pruned vines trained on a vertical shoot positioning trellis system were used. In
a first step, an empirical model was computed to estimate the fraction of bunches occluded by leaves based on
the proven assumption in the literature that there is a relationship between canopy porosity and the fraction of
exposed bunches. For this, images were captured from 1 m segments at two phenological stages (veraison and
full maturation) in non-defoliated and partially defoliated vines of three grape varieties. This model was then
used, in a second step, along with other image-based predictors of bunch weight, to estimate grapevine yield.
The developed approach included image-based variables related to the visible bunch area and perimeter, berry
number and bunch compactness, while considering canopy porosity to estimate the fraction of occluded bunch
area. Results were compared to a manual method based on bunch counts and historical bunch weight, on six
grape varieties, at veraison. All vine images were collected from a perspective perpendicular to the vine rows,
by a static commercial RGB camera or a RGB camera installed on a terrestrial robot.

Results - The yield estimated with the developed algorithm showed a high correlation with the actual yield (R2 =
0.86), with estimation errors ranging between -0.1% and 20.8%, depending on the variety and the year. In most
cases, the proposed algorithm outperformed the manual method which was mostly impaired by variations of
bunch weight that were not considered by historical data. The proposed image-based approach seems to be an
accurate alternative to conventional yield estimation methods. It can be carried out using different image
collection setups and has the advantage of being independent of historical data and able to be applied to much
larger samples than those used in manual methods. Even though the occlusion estimation method worked well
for most cases, further research is needed for modeling non-visible bunches in very dense canopies.
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1. Introduction

Timely vineyard yield estimation can be extremely advantageous for the winegrower, with impacts on the
whole vine and wine production chain (Dunn & Martin, 2004). Current conventional methods of yield
estimation consist of manually sampling grapevine yield components on random vines in the field (Whitty et al.,
2017). This sampling is usually performed near lag phase, on the onset of veraison, and is then generalized to
the whole vineyard plot. However, such methods are dependent on manual counts or destructive sampling,
making them laborious and sensitive to spatial variability, especially in vineyards with high spatial variability
where a higher number of samples is required for accurate results (Taylor et al., 2018).

Several efforts have been made to replace manual methods with automatic and non-invasive approaches.
Recently, the most explored ones have been data driven models based on computer vision and image
processing (Barriguinha et al., 2021). Overall, the automatic recognition of yield components in images
collected in field conditions has proven successful (e.g. Millan et al., 2018; Hacking et al., 2019; Liu et al., 2020).
However, apart from early-stage approaches, the majority of these research disregards the problem of bunch
occlusion by performing partial or total defoliation in the fruiting zone prior to image collection (e.g. Dunn &
Martin, 2004; Pérez-Zavala et al., 2018; Milella et al., 2019). However, such practices should be independent of
yield estimation methods as they impact berry development and maturation and, particularly in warm climate
viticulture regions, can be risky considering the higher chance of sunburn and berry dehydration. In
non-disturbed canopies bunch occlusion by leaves can reach high values (e.g. 50% and 75% at veraison
Victorino et al., 2020).

Visible bunch area and canopy porosity have been used to estimate the percentage of exposed bunches
(Victorino et al., 2022a), considering the fact that a higher porosity also means that there’s higher bunch
exposure. This relationship enables to obtain an estimation of the total bunch area which then needs to be
converted into mass. This conversion can be challenging considering its cultivar-dependency (Lopes & Cadima,
2021; Victorino et al., 2022b). The aim of this paper is to compare, in real field conditions, the accuracy of a
non-invasive and multicultivar image-based yield estimation approach with a manual method based on bunch
counts and historical bunch weight at harvest.

2. Material and methods

Plant material and growing conditions - Data was collected from two sites located within the Lisbon
winegrowing region. In the first site – ISA, Lisboa – data was collected from the white varieties Alvarinho, Arinto
and Encruzado which were spur pruned, drip irrigated, planted in 2006, spaced 1.0 m within and 2.5 m between
N-S oriented rows. In the same site, data was also collected from the red variety Syrah, spur pruned, rainfed and
planted in 1999 spaced 1.2m within and 2.5 m between N-S oriented rows. On the second site – Quinta da
Amieira, Torres Vedras - data was collected from two varietal plots - red variety Castelão and white variety
Chardonnay -, spur pruned, rainfed, planted in 2003 and spaced 1.0 m within and 2.5 m between N-S oriented
rows. All plots were trained in a vertical shoot positioning trellis system with two pairs of movable wires. In
total, it was used six subsets of data with different cultivar, season and site combinations. All data were
collected between 2018 and 2021, on 1 m length vine segments at the onset of veraison (BBCH 81; Lorenz et
al., 1995). A total of 213 vine segments were analyzed (30–40 per data set).

Image acquisition & processing - Images were collected with a blue background in order to facilitate image
analysis. From each vine segment, the following variables were extracted: visible bunch projected area (vBA),
visible bunch projected perimeter (vBP), visible berry number (vBe) and canopy porosity (POR). To assess these
features, all images were processed as follows: i) images were scaled based on the physical scale present under
the cordon of each vine segment; ii) images were cropped in order to include only a region of interest (fruit
zone) that encompasses approximately 50 cm above the cordon; iii) bunches were manually segmented on
each image in order to obtain the actual vBA, vBP and vBe from each vine segment; iv) to estimate POR, canopy
gap pixels were classified using a static color threshold after converting the original image from RGB to HSV
(Hue-Saturation-Value) color space for improved invariance to illumination conditions. This task was performed
using OpenCV in PyCharm® while tasks i to iii were performed with the software Image J® (v1.53k, National

Institutes of Health, EUA). For more details see (Victorino et al., 2022a; Victorino et al., 2022b).
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Yield estimation At harvest, all bunches of the analyzed vine segments were counted and weighed. The final
yield was compared to the output of the two methods of yield estimation: (i) the manual method, based on
bunch counts and multiplication by historical bunch weight (Dami & Sabbatini 2011); (ii) an image analysis
method following recent research (Victorino et al., 2022a) which considers visible bunch area and canopy
porosity to estimate total bunch area (TBA), in order to overcome bunch occlusion by leaves. This was then
followed by a conversion of bunch area into yield based on a combination of variables obtained via image
analysis, selected via a stepwise regression model, which is fully described in the results section.

Data analysis - All cultivars’ datasets were grouped into one original dataset, which was divided into a training
set (with 50% of the data) and a validation set (with the remaining 50%) in a fully random way. Data analysis
was divided into two parts. The first part consisted in the computation of a stepwise regression model (SAS®
v9.3; SAS Institute, Cary, NC, USA) for yield estimation based on traits obtained via image analysis. The model
was then validated on the validation set, and the coefficient of determination (R2) and root mean squared error
(RMSE) were used to evaluate its performance. The second part of data analysis consisted of comparing the
output of the developed model with yield estimation obtained with manual methods. For this, to allow for a fair
comparison, both approaches were used only on the validation data set, and estimation errors (Yieldest -
Yieldact)/Yieldact) and trends were compared.

3. Results and discussion

Obtaining the best set of yield predictors - To find an appropriate set of independent variables to predict yield, a
forward stepwise regression analysis between image-based features and actual yield was applied to the training
set. Table 1 shows the summary of the stepwise regression. In the first step the variable TBA×CI2 was selected,
corroborating previous work (Victorino, et al., 2022a) and underlying the importance of TBA in explaining
grapevine yield. The variable CI is associated to TBA, allowing the differentiation between cases with the same
TBA but with different bunch architecture, as bunch compactness is known to be a trait that influences bunch
weight (Tello et al., 2016). The second selected variable was vBA/vBP (Table 1). In Victorino et al. (2022b),
authors explored this ration in laboratory conditions, as a bunch with a higher percentage of holes in its
structure will show a lower ratio. The final variable selected to enter the model (derived variable vBA/vBP×vBe)
associates the ratio vBA/vBP with an indicator of bunch size (vBe), increasing model performance. Furthermore,
the fact that vBe was considered by the model, even if included in a derived variable, goes in accordance with
previous publications that elected vBe as an important yield estimator (e.g. Aquino et al., 2018; Millan et al.,
2018; Liu et al., 2020). However, as previously reported (Lopes & Cadima, 2021; Victorino et al., 2022b), bunch
weight estimation accuracy increases when vBe is not used as a single predictor but instead used along with
other predictors.
The estimated values of the elected model fit very well with the actual yield, however, the residual plot (not
shown) indicated that estimated yield variation was dependent on the values of the predictor variables. The
violation of the constant variance assumption indicated the need for a variable transformation. A square root
transformation of the response variable (yield) was performed which stabilized the variance and improved the
linearity of the model (data not shown). Equation 1 shows the final model, after converting the rooted response
back to the original scale. The final model presented an R2 = 0.86 and a RMSE = 0.82 kg on the validation set.

Est. yield image (kg/m) = (0.883 + 298E−7 × [TBA × CI2] + 0.0004 × [ × vBe] – 0.154 × )2
𝑣𝐵𝐴
𝑣𝐵𝑃

𝑣𝐵𝐴
𝑣𝐵𝑃 (1)

For variable description see material and methods section.

Comparing the accuracy of Yield Estimation methods - Figure 1 shows the comparison between the observed
yield per meter and the estimated yield via manual and image-based methods, for each variety. Both yield
estimating methods presented the same overall correlation coefficient between estimated values and actual
yield (r = 0.89), however under and overestimations can be observed in both cases. Regarding manual
estimations, the lowest absolute error was observed on cv. Arinto (7.6 %) followed by cv. Castelão (10.0 %),
while the highest was observed on cv. Syrah (124.2 %). Within manual estimations, only cv. Arinto presented an
absolute estimation error below 10%, while cvs. Chardonnay and Syrah presented very high errors. The manual
method explored in this work, despite being a highly accessible method to any winegrower, in some cases,
showed extremely high estimation errors, mainly caused by differences between historical and actual bunch
weight. In some cultivars, this error was almost twofold (e.g. observed bunch weight: 72.1 g against historical
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bunch weight: 119.5 g for cv. Syrah), likely due to the problems of the bad fruit set and water stress observed
during the sampled seasons.

Image-based estimations presented lower absolute errors than the manual method in 5 out of 6 data sets, with
only two cultivars presenting values above the |10%| error threshold mentioned for near-harvest estimations
by Carrillo et al., 2016. The image-based estimation with the lowest absolute error was obtained on cv.
Chardonnay (0.1 %), followed by cvs. Alvarinho (2.8 %) and Syrah (4.4 %), all three cases with values below the
strictest thresholds reported in Whitty et al. (2017), |5%|. The highest errors obtained with the image-based
method were observed on cvs. Arinto and Encruzado which showed the densest canopies (lowest vBA and
POR), being examples of very challenging scenarios for an automatic image-based approach. Overall, with all
cultivars combined, the image-based method presented a lower absolute estimation error than the manual
approach. As the image-based method is not dependent on historical data, the approach designed in this work
seems highly advantageous for the studied cases.

4. Conclusions

Several image-based variables such as visible berry number, bunch perimeter and bunch compactness index,
were used as predictors of grapevine yield across different cultivars, after overcoming bunch occlusion by leaves
using canopy porosity and visible bunch area. Yield estimation results based on the image-based approach
suggested in this work outperformed most manual estimations. Although the manual method is accessible to
any winegrower and obtainable at earlier phenological stages, the studied image-based approach presents the
advantage of potentially being fully automated and used across whole vineyards, non-invasively.
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Table 1: Summary of stepwise regression between grapevine yield (dependent variable) and visible bunch
projected area (vBA), visible bunch projected perimeter (vBP), visible berry number (vBe), estimated total
bunch projected area (TBA, Victorino et al. 2022a), compactness index (CI) at veraison, determined using the
OIV scale (OIV, 2009). Includes statistical significance for variable selection (p-value), partial R2and MSE (mean
squared error).

Step Added Variable Removed Variable p-Value Partial R2 MSE (kg/m)
1 TBA × CI2 - 0.000 0.837 0.580
2 vBP/vBA × vBe - 0.051 0.849 0.544
3 vBA/vBP - 0.125 0.852 0.537
4 vBA/vBP × vBe - 0.014 0.861 0.511
5 - vBP/vBA × vBe 0.538 0.860 0.508

Figure 1: Observed and estimated grapevine yield using manual methods and image analysis for the studied
cultivars on the validation set. Average ± std error of yield per vine segment (1 m). ISA: Instituto Superior de
Agronomia site, QA: Quinta da Amieira site.
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