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Abstract: 
 
Context and purpose of the study – Weather uncertainty is forcing Mediterranean winegrowers to adopt new 
irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine 
quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water 
status is a major concern. Leaf water potential measured at pre-dawn (YPD) is considered to be in equilibrium 
with soil water potential and is highly correlated with soil water content at the soil depth where roots extract 
water.  
The aim of this study is to evaluate a dataset of eco-physiological data collected in a 3-year vineyard irrigation 
trial to assess the explanatory power of the fraction of transpirable soil water (FTSW) to predict YPD by comparing 
the classical statistical regression approach with a machine learning algorithm (MLA). 
 
Material and methods – Deficit irrigation trials were conducted from 2013 to 2015 in a commercial vineyard in 
the Alentejo (southern Portugal). Trial plot was planted with Vitis vinifera (L.) cv. Aragonez (ARA)(syn. 
Tempranillo), grafted onto 1103 Paulsen rootstock and spaced 1.5 m within and 3.0 m between N-S oriented 
rows. The experimental layout was a randomized complete block design with two treatments: sustained deficit 
irrigation (SDI – control; ~30% Etc) and regulated deficit irrigation (RDI; ~15% Etc) and 4 replicates per treatment. 
The YPD and soil water content were measured the day before and the day after each irrigation event by using a 
capacitance probe down to a soil depth of 1 m and a Scholander pressure chamber. Models predicting YPD from 
FTSW were trained on 600 data cases and validated on an independent dataset (10% of all available data) using 
MATLAB R2022b (Mathworks, USA) and STATISTICA 13 (Tibco, USA). 
 
Results – Our results show that 87.6% of the observed YPD variability is explained by the FTSW using a linear 
regression model (LRM) with a linear-logarithmic transformation of the independent variables. The accuracy of 
the prediction model, as measured by root mean squared error (RMSE), in the independent validation dataset, 
was 0.08 MPa. These results were compared to the estimation accuracy of a set of MLAs. Two support vector 
machine (SVM) algorithms with a quadratic and a medium Gaussian kernel function, and three Gaussian process 
regression (GPR) algorithms with an exponential, a squared exponential and a rational quadratic kernel functions 
were tested. All trained MLAs showed an accuracy in explaining the variability of the YPD (86-87%) similar to the 
LRM. An increase in the model explained variability of the independent dataset from 89 to 91% was observed in 
all MLAs, with an accuracy of 0.087 to 0.096 MPa as measured by the RMSE. 
Both statistical methods indicate that YPD can be estimated with good accuracy using FTSW as an explanatory 
variable. Regarding the comparative performance of the two types of statistical models no differences were found 
in the ability of the tested models to estimate YPD. 
 
Keywords: Deficit irrigation, soil water content, machine learning algorithms. 
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1. Introduction 
 
The optimization of irrigation management is a major issue to promote viticulture sustainability. New irrigation 
strategies that cope with warmer climates and water scarcity while ensuring a sustainable yield and adequate 
berry and wine quality standards are on demand (Costa et al., 2020). A precise and high-resolution monitoring 
of soil water content and vine water status is needed to efficiently manage such irrigation strategies. Leaf water 
potential measured at pre-dawn (YPD) is considered to be in equilibrium with soil water potential and highly 
correlated with soil water content at soil depth where roots extract water (Ameglio et al, 1999; Williams and 
Araujo, 2002; Lebon et al., 2003; Pellegrino, 2003). However, measuring YPD, is a destructive and time-consuming 
method, has low spatial and temporal resolution, and involves measurements during the night, at pre-dawn. In 
order to overcome such a series of disadvantages, faster, continuous and accurate methods are on demand. An 
alternative approach is to use data from soil moisture monitoring devices as a proxy for YPD. Modelling YPD from 
soil water content (SWC) is not new and has been proposed to assess plant water status and support irrigation 
management of vineyards (Williams and Araujo, 2002; Pellegrino, 2003; Pellegrino et al., 2004). These studies 
used classic regression analysis to determine the relationships between SWC and YPD. However, few studies used 
a machine learning approach for this task. The present study aims to evaluate a dataset of eco-physiological data 
collected in a 3-year vineyard irrigation trial to assess the explanatory power of the fraction of transpirable soil 
water (FTSW) to predict YPD by comparing the classical statistical regression approach with a machine learning 
algorithm (MLA). 
 
2. Material and methods 
 
Plant material and growing conditions 
 
Plant material – the experiments was conducted from 2013 to 2015 in a commercial vineyard (Herdade do 
Esporão), located at Reguengos de Monsaraz, Alentejo winegrowing region (Southern Portugal, lat. 38◦ 23ʹ 
55.00ʹʹ N; long.7◦ 32ʹ 46.00ʹʹ W). The plot was planted with Vitis vinifera (L.) cv.  Aragonez (ARA; syn. Tempranillo), 
grafted onto 1103 Paulsen rootstock and spaced 1.5 m within and 3.0 m between N-S oriented rows. The 
experimental layout was a randomized complete block design with two irrigation treatments: sustained deficit 
irrigation (SDI - control; ~30% ETc) and regulated deficit irrigation (RDI; ~15% ETc) and 4 replicates per treatment. 
The elemental plot comprised three adjacent rows (two buffer rows and a central one for data collection). 
Measurements were done in two blocks per irrigation treatment. 
 
Plant and soil water content measurements - Predawn leaf water potential (YPD) and soil water content were 
measured the day before and the day after each irrigation event by using a Scholander pressure chamber and a 
portable capacitance probe down to a soil depth of 1 m, respectively. The fraction of transpirable soil water 
(FTSW) was calculated for each smart point according to Pellegrino et al. (2003, 2004). The YPD of two exposed 
and fully unfolded healthy leaves, collected from the vines near the access tube of the capacitance probe, were 
measured before dawn. A total of 8 leaves spread over 4 sampling points were measured on each sampling date. 
 
Statistical analysis – The original data was split into two datasets, ensuring that both datasets have a similar data 
distribution. A dataset with 600 data cases, was used for training and internal validation of the models, and 
another dataset with 10 % of all original data, was used as an independent validation dataset. A linear regression 
model with a linear-logarithmic transformation of the independent variable (FTSW) was fitted from conventional 
least squares method. The same dataset was used to train and validate a set of supervised MLAs. Two support 
vector machine (SVM) algorithms with a quadratic and a medium Gaussian kernel function, and three Gaussian 
process regression (GPR) algorithms with an exponential, a squared exponential and a rational quadratic kernel 
function, were fitted to predict YPD from FTSW with MATLAB R2022b (Mathworks, USA). The supervised MLAs 
were fitted during the training phase using a five-fold cross-validation process. All models have been subjected 
to a validation process using an external validation dataset. The measures of the differences between the model 
predicted and observed values were analysed by the root mean square error (RMSE) and the mean absolute 
error (MAE) and used as measures of model accuracy. 
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3. Results and discussion 
 
3.1. Linear regression model  
 
The trained LRM with a linear-logarithmic transformation of the independent variable (FTSW) explained 87.6% 
of the observed YPD variability (Figure 1). The model showed a tendency to overestimate YPD values lower than 
-0.4 MPa (Figure 2A). Nevertheless, the model presented a good accuracy, as measured in the independent 
validation dataset by RMSE values (0.082 MPa), and the MAE (0.067 MPa) (Table 1).  
 
3.2. Supervised machine learning algorithm  
 
The trained MLAs were able to explain 86-87% of the YPD variability in the training process (data not shown). In 
the validation process, the MLAs showed good accuracy with the RMSE and MAE of the YPD, predicted with the 
independent validation dataset, in the range of 0.087 - 0.096 MPa and 0.066 - 0.069 MPa, respectively (Table 1). 
As observed in the LRM, the MLAs showed a tendency for higher estimation errors when the YPD was below -0.4 
MPa (Figures 2B-F). Between the MLAs, the Gaussian process regression (GPR) algorithms performed slightly 
better than the support vector machines (SVM) (Table 1). 
 
3.3. Comparing the accuracy of both methods for estimating YPD  
 
To compare the accuracy of LRM and the MLAs to estimate YPD from FTSW, a validation using an independent 
dataset was performed. The scatter plots of observed vs estimated YPD, using the independent validation dataset 
show an overall good agreement between observed and model predictions (Figure 2). In turn, the correlation 
between observed and estimated values showed a very high and significant agreement (see Table 1). indicating 
that the model is suitable for accurateYPD prediction. 
 
4. Conclusions 
 
Aiming to find alternative methods to pre-dawn leaf water potential measurements to assess soil and plant water 
status in vineyards, we tested the explanatory power of FTSW for YPD estimation. In this paper, we compared a 
classical linear model approach with non-parametric MLAs approaches, using different non-linear covariance 
functions (kernels). Results showed that all models estimated the YPD from FTSW with high prediction accuracy, 
with a maximum prediction error of around 0.06 MPa in the validation process. The high goodness of fit of all 
models indicate almost no differences between the classic linear regression model with logarithmic 
transformation of the independent variable (FTSW) and the machine learning algorithms. Although the MLA 
models show only slightly higher accuracy than LRM, the advantage of MLA to automatically learn data patterns 
from new data inputs and to optimize the YPD prediction models should not be disregarded. Because of its 
simplicity and computational power, MLA using YPD estimated from FTSW can be an important tool to support 
deficit irrigation management strategies in modern viticulture. Since root distribution and extraction patterns 
may not always be homogeneous across the soil profile and in different soil textures, also due to the large 
influence of atmospheric demand on the thresholds of FTSW, it should be considered that the model needs to 
be validated before use in other climates, soils as well as grapevine variety/rootstock combinations. 
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Figure 1. Linear regression model (LRM) with a linear-logarithmic transformation of the independent variable 
(FTSW) versus the YPD, fitted for Aragonez. The training dataset (n=600) was used for modelling purposes. 

 
Figure 2: Observed versus predicted YPD using validation dataset. (A) Linear Regression Model (LRM) with linear-
logarithm transformation of FTSW, (B) Support Vector Machine (SVM) algorithm with a quadratic kernel function, 
(C) SVM algorithm with a medium Gaussian kernel, (D) Gaussian Process Regression (GPR) with an exponential 
kernel, (E) GPR with a squared exponential kernel and (F) GPR with a rational quadratic kernel. The black dashed 
line represents the 1:1 line. 

 
Table 1. Statistical indicators of goodness of fit of the predicted models for YPD estimation. Linear regression 
model (LRM) with a linear-logarithmic transformation of the independent variable (FTSW) and machine learning 
algorithms (MLA) accuracy to predict YPD from an independent validation dataset. The Pearson correlation 
coefficient (r), root mean square error (RMSE) and mean absolute error (MAE) are presented as accuracy 
measures. All the correlation coefficients presented were statistically highly significant, p < 0.001. 

Model Transformation r RMSE 
(MPa) 

MAE 
(MPa) 

Linear Regression Logarithmic 0.902 0.082 0.067 

Support Vector 
Machine 

Quadratic  0.899 0.096 0.069 
Medium Gaussian 0.906 0.093 0.068 

Gaussian Process 
Regression 

Exponential 0.911 0.087 0.066 
Squared Exponential 0.909 0.089 0.066 
Rational Quadratic 0.909 0.089 0.066 
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