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Abstract. A visible change in the appearance of a fresh product often negatively impacts the perceived quality 
from a consumer's point of view. This is particularly evident in fresh table grapes, for which rachis browning 
results in a sudden drop in its selling price. Early detection of browning could help implement preventive 
strategies, leading to economic savings. To monitor rachis browning onset on a novel table grape variety during 
cold storage, a Hyperspectral Specim IQ camera was used to record 3D images in the Vis-NIR range (400-1000 
nm). After image acquisition, the Specim IQ Studio software was used for the classification of regions of interest 
(ROIs), which were used to build false color masks for the amount of browning of rachides. 

1. Introduction  

For fresh table grapes, rachis browning is one of the 
main external modifications that affect their quality during 
storage and decreases grape value [1]. Usually, rachis 
browning is evaluated by subjective color scale based 
image analysis methods in the visible range. However, this 
subjective evaluation of rachis browning is prone to errors 
and can be influenced by various factors such as the 
compactness of the cluster, the color of the berries, and the 
level of decay. Additionally, the evaluator's proficiency, 
level of training, and workload also play an important role. 
This is because the analyst has to simultaneously take into 
account the browning intensity, the decrease in green color 
intensity, and the reduction in rachis thickness due to water 
loss [2]. Moreover, these methods evaluate the browning 
only after its visible onset, which means that it has already 
impacted the perceived quality and decreased the 
product’s value. Our investigation was based on two 
known facts: rachis browning is linked to water and 
chlorophyll loss, and it involves a modification of the 
internal cellular structure [3, 4]. The green chlorophyll 
pigment can be detected in the visible portion of the 
electromagnetic spectrum, while the water molecules 
show strong absorption in the NIR (near-infrared) region. 
Moreover, the NIR region can also be used to investigate 
modifications in the cellular structures. Therefore, we 
followed the onset of browning in the visible-NIR range. 

Hyperspectral Imaging (HSI) is a rapid, accurate, and non-
destructive analytical method for assessing food quality. 
Hyperspectral images generally consist of hundreds of 
bands (each bands contains a precise number of 
wavelength) collected in the ultraviolet or visible to the 
infrared range [5]. This technique provides both spatial 
and spectral information since each image is a 
hyperspectral 3D data cube containing a sequence of 
consecutive sub-images taken at various wavelength bands 
covering the whole surface of the object [6]. By extracting 
each pixel in this 3D object, it is possible to visualize the 
spectral fingerprint of that point, which is uniquely linked 
to its specific chemical composition [7]. The possibility of 
having specific, point-by-point information of the whole 
specimen under investigation enables the selection of areas 
of interest in which a change is taking place (e.g., 
browning) and allows tracking changes simply by 
collecting sequential HIS images. 

2. Material and methods  

2.1. Grape samples 

The table grape variety employed in this study, named 
Aika [8], was obtained as part of an ongoing breeding 
program carried out in our research center CREA-VE of 
Turi (BA) Southern Italy and was harvested from 
vineyards growing in the same area. After harvest, the 
bunches were immediately analyzed (T1) and then packed 
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in cardboard boxes and stored at 2°C with 95% relative 
humidity. The samples were stored in the absence of sulfur 
dioxide (SO2), which is the most important preservative 
used during the commercial storage and shipping of table 
grapes. We chose not to use SO2 generating pads since this 
compound can alter the color of the rachis from yellowish 
to khaki modifying the natural transition from green to 
brown of the rachis [2]. Therefore, it would have added a 
source of uncontrolled color variability.  

Before each measurement, the bunches were left to cool 
down to the set room temperature (25°C). The 
measurements were performed over 14 days, every 3 to 4 
days until the onset of browning for a total of 5 time points 
collected including the harvest (T1 to T5). To follow the 
onset of browning on rachis we did not remove the berries 
since it would have made it impossible to repeat the 
measurement on the same intact bunch. This means that 
due to the presence of berries, it was difficult to observe 
the internal part of the rachis. The changes were followed 
on the visible portion of the rachides, which is the main 
part visible to consumers.  

2.2. Image acquisition and processing 

A Specim IQ camera was employed to acquire 3D 
images in the Vis-NIR range (400-1000 nm). In the 
laboratory each grape bunch was placed against a black 
background and fully illuminated by halogen tungsten 
lamps, the setup is displayed in Figure 1. The spatial 
resolution of the recorded data is 512x512 pixels, the 
number of total bands is 204, and the spectral resolution 
(FWHM) is 7 nm.  

 
Figure 1. Image collection setup in the laboratory. 

Prior to the analysis, a black-and-white correction was 
performed on the spectral images. A dark image and a 
white image were obtained respectively by covering the 
lens with a cap and collecting an image of a standard white 
reference [9]. The corrected image (Rs) was calculated 
according to the following equation: 

Rs (l,t) = (𝑅0- 𝑅d)/ (𝑅t- 𝑅d)     (1) 

where R0 is the original hyperspectral image, Rd is the 
dark image and Rt is the white reflectance image [10]. To 
remove redundant wavebands and decrease the high 
dimensionality of the data we performed a PCA.  

We applied two algorithms for image classification: 
unsupervised K-means clustering with Python 3.12.3 and 

supervised SAM (Spectral Angle Mapper) with the 
Specim IQ Studio software. 

From selected ROIs (regions of interest) the mean 
spectral profiles were preprocessed with a Savitzky Golay 
smoothing (filter width 15 and polynomial order 2). 

3. Results  

A classification procedure, given a set of observations 
(i.e., the pixel represented as vectors in a hyperspectral 
image), tries to allocate a unique label to each pixel vector 
[11]. The unsupervised K-means clustering did not allow 
a classification based on the different browning levels. It 
seems that the classification outcome was affected by the 
non-homogeneous illumination of the sample. Even 
focusing only on the rachis, its tridimensional shape results 
in shadowing of the side curved regions. This is probably 
due to the reflection following a Lambertian response [12] 
with obliquely oriented pixels near the edges contributing 
a weaker intensity of radiation reflected back to the 
camera. 

Therefore, we decided to perform a supervised image 
classification which can be either based on pixel 
information or based on the use of training samples. In our 
case, such as in natural environments, it is difficult to find 
labeled training samples [13]. This is especially true if you 
want to predict future browning based on “pre-browning“ 
classes. 

In the onset of rachis browning, the visible appearance 
of brown spots is the final step. Between the “healthy and 
visibly green” and “damaged and visibly brown” steps the 
rachis cells and their molecular composition undergo a 
gradual change. This change, although not easy to follow 
by the naked human eye, is evident in the modification of 
the spectral profile (Figure 2). Therefore, based on the 
rachis portion that turned brown at the final time point 
collected (T5), we selected the same regions at the 
previous time points (T1 to T4). Those areas even still 
greenish looking in the future days were going to become 
brown, thus representing “pre-brown” pixels.  

 
Figure 2. Example of spectral profile (% reflectance vs nm) of target 
classes: healthy (in yellow), pre-brown (in green) and visibly brown (in 
orange). 

The selection of ROIs area is of pivotal importance. We 
wanted to select rachis areas large enough to extract an 
effective reference mean spectra for the pre-brown class at 
each time point. As observed with the reflection issues 
encountered with the unsupervised classification linked to 
the shape of the rachis, we needed to select a small area 

sample 

SPECIM 
camera 
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(few pixels) of the whole rachis. In a recent study, 
researchers evaluated the effect of the ROIs size on the 
classification of wheat seeds. They found that even if more 
pixels can improve the signal-to-noise ratio through pixel 
averaging, the curved surface of the seeds causes non-
uniform diffuse reflection, which has a strong detrimental 
impact. A flatter but smaller ROI area, despite the higher 
level of random noise associated with the ROI mean area, 
was found to be more effective for the classification, since 
it is least prone to non-uniformities in diffusely reflected 
light [14].  

The SAM algorithm employed determines the spectral 
similarity (smaller spectral angle) between an image 
spectrum and a reference spectrum (e.g. from a ROI) of 
each pixel in the hyperspectral data. Choosing smaller and 
carefully selected the ROIs as input for the supervised 
SAM classification allowed us to correctly classify areas 
of the rachis as “pre-brown” in contrast to those still 
healthy and already brown (Figure 3).  

 
Figure 3. SAM classification of two time points T2 and T4 based on 
browning at T5 for Aika variety. The darker the spectral pixels in the 
image the higher the similarity to the reference spectrum. 

It was not possible to classify any pixel at harvest (T1) 
other than belonging to "healthy green" (Figure 4). That is 
expected since the bunches analyzed at T1 were brought to 
the lab immediately after harvest, thus the whole rachis is 
still green and healthy.  

 
Figure 4. SAM classification of T1 (harvest) based on browning at T5 
for Aika variety. 

Moreover, we found that the classification models are 
variety-dependent; they are not able to classify other 
varieties (Figure 5). 

 
Figure 5. SAM classification of T3 based on browning at T5 for the novel 
Vigilarum variety using pre-brown class created for Aika variety. 

The SAM analysis determines reasonable classification 
with a good concordance to the visual perception, as 
shown in the figures. We found that the accuracy of the 
prediction is in accordance with the future browning with 
sometimes overlaps in the classification. Unfortunately, a 
quantitative evaluation of the SAM result was not 
supported by the used version of Specim IQ Studio. The 
main advantage of the software is that once these classes 
are created it is possible to display rachis classification 
upon taking a picture (Figure 6). 

 
Figure 6. Example of SAM classification on the camera display. 

4. Conclusion 

Maintaining the quality of fresh fruits often is a matter 
of visual appearance. Our studies aim to find a spectral 
region that can track the changes in the rachides before 
browning onset to allow the adoption of proper selling 
strategies. Carefully selecting ROIs areas, three classes 
have been created with a supervised SAM algorithm: 
healthy, brown, and pre-brown. The classification was 
performed on the camera's own software (Specim IQ 
Studio). To comply with FAIR principles [15], we are 
currently implementing supervised classification 
algorithms in Python using the selected ROIs as inputs. 
These algorithms could be used with images collected with 
any HIS camera. 
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