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Abstract. The use of a wine’s mineral profile (MWP) as a stable and distinctive fingerprint can revolutionize 
wine authentication. By employing inductively coupled mass spectrometry, we assessed the concentration of 11B, 
23Na, 24Mg, 27Al, 28Si, 31P, 34S, 35Cl, 39K, 43Ca, 45Sc, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 75As, 79Br, 
85Rb, 88Sr, 89Y, 90Zr, 93Nb, 111Cd, 118Sn, 127I, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 182W, 205Tl, 208Pb, 238U with 
minimal sample preparation. MWP is shaped at least by soil composition and winemaking techniques. This last 
factor may overshadow the terroir when defining this profile, hindering origin-related information extraction. 
However, the integration of artificial intelligence (AI) presents itself as a solution. More than 19,000 MWPs were 
analysed, laying the groundwork for a machine-learning algorithm to assess wine’s country, region and main 
grape variety. Extreme Gradient Boosting was employed, exceeding scores of areas under the receiving operating 
characteristic curves of 0.9 for country, French wine region and grape variety classification. This performance 
enables a specificity of wine authentication up to 99%, demonstrating the potential of combining AI and MWP 
analysis. This study highlights the importance of comprehensive MWP datasets for advancing AI applications in 
origin verification, offering a promising tool for the wine industry to enhance security and consumer trust. 

1. Introduction  

Wine is a popular beverage with an important economic 
impact worldwide. It can be subject to fraudulent 
practices  [1], which has led to an increasing interest in 
techniques to assure its traceability and authentication  [2]. 
The three prevalent approaches in the literature are DNA 
analysis  [3], determination of organic compounds, i.e., 
polyphenols and volatiles compounds, or mineral 
elements  [1], both of which may be considered 
fingerprints of a wine.  

For the identification of grape varieties, DNA analysis 
has been studied as an avenue of research. It selects 
characteristic sequences of the variety on the genetic 
material recovered from the beverage  [4]. However, 
studies suggest that only wines under a year post-bottling 
may be analysed, as the DNA degrades over time, which 
hinders sample identification  [4,5] 

Isotope measurement gives information about wine’s 
both organic and inorganic profile. Isotope ratio-mass 
spectrometry (IRMS)  [6] and liquid chromatography-
IRMS  [7] are two of the techniques used for this 

quantification. Nonetheless, the preparation of samples is 
expensive and time-consuming, impeding the creation of a 
comprehensive database. 

Many analytical techniques can be used to determine 
the organic compound profile, such as gas 
chromatography-mass spectrometry  [8], high-
performance liquid chromatography-diode array 
detection  [9] and nuclear magnetic resonance  [10]. Even 
though this profiling is widely used, these molecules are 
sensitive to oxidation, ageing of the wine and its storage 
conditions  [11], hampering the comparison of the same 
sample over the years. 

To address the limitations imposed by the organic 
profile, the measurement of the elemental inorganic 
content has been explored as an alternative for verifying 
the origin of wine.  [12,13]. These elements can be divided 
into three main categories depending of their 
concentrations. The first category is referred to as macro 
elements, comprising for example K, Na, Mg and Ca 
whose concentrations are in the range of 10 to 1000 mg/kg. 
The second category is microelements, with 
concentrations in the range of 0.1 to 10 mg/kg, including 
for example Fe, Cu or Mn [12]. Both categories assemble 
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elements essential to plant growth and development as 
well as non-essential  [14] while the third category 
comprises non-essential elements such as rare earth, Ag, 
Pb or U, with a range of concentrations between 0.1 and 
1000 μg/kg  [12]. Some factors to influence their 
concentrations are grape maturity, winemaking practices, 
soil type and properties and the composition of the mother 
rock  [14,15]. 

Because of these wide ranges of concentrations as well 
as the variety of elements to be measured, inductively 
coupled plasma-mass spectrometry (ICP-MS) is widely 
used  [1]. In the literature, it is used in association with 
classical chemometrics analysis  [16,17], as well as 
machine learning (ML) classification algorithms  [18,19]. 

Although many efforts have been made to develop 
authentication methods, current literature often focuses on 
specific parameters like individual countries  [13], 
regions  [20], wine appellations  [18], or grape 
varieties  [12,19]. This narrowing frequently results in 
limited sample sizes, typically staying under 100 samples, 
which constrains the general applicability of the findings 
as well as their statistical significance. 

As the concern for wine origin verification increases, 
the need to conciliate the cost with the reliability of the 
analysis becomes of utmost importance. In this study, we 
show a quick and cost-efficient ICP-MS semi-quantitative 
(SQ) method of wine analysis, quantifying 40 elements, 
who integrate the Mineral Wine Profile (MWP), on over 
200 samples per day. The resulting MWP constituted an 
oenotheque comprising of more than nineteen thousand 
samples, which were then used to train ML algorithms to 
verify a wine’s origin. We aim to establish a timeless tool 
which will be able to fully authenticate a wine after the 
analysis of only a 30 mL sample. 

2. Materials and methods 

2.1. Reagents and materials 

A total of 19431 wines originating from commerce as 
well as international contest were analysed in this study. 
More details about their origin are described in  

Figure 1. For each wine, approximately 30 mL were 
collected in certified metal-free tubes (VWR®). The 
sample was diluted in the proportion 1:3 with nitric acid 
1% (v/v), prepared with ultrapure water (MilliQ®, 
18.2 mΩ.cm) and nitric acid Suprapur® grade (69% (v/v), 
Roth), and 10 µg/L of indium standard solution, prepared 
with 1000 mg/L indium standard in HNO3 4% (v/v) 
purchased from SCP Science. This dilution allows the 
storage of wine in acid conditions, preserving the MWP 
over time by hindering precipitation and adsorption by the 
tube walls. 

Before analysis, a second dilution of 1:5 is done with 
HNO3 1% (v/v), dilution of nitric acid Suprapur® grade 
(69% (v/v), Roth) with ultrapure water (MilliQ®, 
18.2 mΩ.cm). This dilution factor (1:15) has been shown 
to minimize matrix effects  [21]. 

A tuning solution containing 1 μg/L of Ce, Co, Li, Tl, 
and Y in 2% HNO3 (v/v) (Agilent Technologies) is used in 
the beginning of the analysis for mass calibration and 
performance validation. A multi-element standard 
(VWR®, reference 85006.186) with 100 mg/L of  Ag, As, 
B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, 
Na, Ni, Pb, Sb, Se, Sr, Ti, Tl, V, and Zn, in 5% HNO3 (v/v) 
was diluted to obtain the semi-quantitative calibration 
standard of concentration 20 µg/L. To control and validate 
this calibration, a wine of commercial origin is used as 
reference. It is prepared following the same procedure used 
for the wine sample described previously and will be 
referend as control wine in this study. 

2.2. Mineral Wine Profile Determination 

The MWPs were determined by ICP-MS analyses, 
performed between June 2022 and March 2024 at 
M&Wine, Lyon-France, and the Institut de Sciences 
Analytiques, Université Claude Bernard Lyon 1, using 
different quadrupole ICP-MS equipment. Most of the 
measurements were performed using Agilent 
Technologies simple quadrupole-ICP-MS 7850 with an 
integrated autosampler, SPS 4. A micromist nebulizer was 
employed for all measurements. To minimize polyatomic 
interferences, the collision cell was set to Helium mode for 
all elements and the flow rate was 5 mL/min. For the 
operating conditions, the following parameters were set: 
1550 W forward power, 1 L/min carrier gas flow, 15 L/min 
plasma gas flow and 1 L/min auxiliary gas flow. A tuning 
solution was employed before each analysis to adjust the 
remaining parameters to optimize the signal. Analysis of a 
control wine is done at the beginning, middle and end of 
each sample sequence. Blanks and the 28-element standard 
are reanalysed every 40 samples. 

The SQ analysis enabled the determination of the 
elemental concentrations using the 28-element standard 
solution. The following elements were analysed, with 100 
sweeps and one replicate: 11B, 23Na, 24Mg, 27Al, 28Si, 31P, 
34S, 35Cl, 39K, 43Ca, 45Sc, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 
60Ni, 63Cu, 66Zn, 75As, 79Br, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 
111Cd, 115In, 118Sn, 127I, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 
146Nd, 182W, 205Tl, 208Pb, 238U. All but 115In, the internal 
standard, constitute the MWP. 

2.3. Statistical analysis and sample classification 

Before any analysis, values lower than the limit of 
quantification (LOQ) were replaced for 10-4. For the 
columns with less than 100 samples with values lower than 
LOQ, the sample was excluded from the dataset. 
Praseodymium, neodymium, scandium and samarium had 
more than 60% of values lower than LOQ so they were 
considered outliers and were not included in the analysis. 
Silicon was not included in the analysis because of 
detection limitations.  

One-way ANOVA was performed for each label in the 
country, French region and principal grape variety, when 
the number of samples was greater than 50. 
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In a previous study  [22], our group has seen a natural 
separation in data and its classification is possible using 
ML algorithms. Sample classification was performed as 
described in the aforementioned study with changes. 
Labels with less than 50 samples present in the database 
were not used for model training nor testing. Samples with 
unknown labels were also not employed.  

As done previously, the following six models were 
compared by means of the area under the receiver 
operating characteristic curve (AUC). This metric 
indicates the likelihood that a classifier will correctly rank 
a randomly selected positive instance above a randomly 
selected negative instance. Random guessing would give 
an AUC of 0.5, whereas a perfect classifier achieves 
1.0  [23]. All of the models were developed in Python, 
version 3.9.19. 

Extreme Gradient Boosting (XGB) is a boosting 
ensemble learning algorithm that combines the predictions 
of multiple decision trees to achieve the final 
classification  [24]. It was implemented using the XGBoost 
library  [24].  

Artificial Neural Networks (ANN) is a technique 
comprising interconnected nodes organized in different 
layers, the first being the input layer, the last the output 
layer and in between both there are one or more 
intermediate layers  [18]. It was created using the 
TensorFlow library  [25]. 

The following  ML models were implemented using 
the scikit-learn library  [26]. 

Random Forest (RF) consists of a group of tree 
predictors. Each tree is based on random vector values that 
are sampled independently and follow the same 
distribution for all trees in the forest  [27]  

k-Nearest Neighbours (k-NN) is a method where 
given a set of known classes and an unknown sample, its 
label will be determined by comparing to the most 
frequently occurring label among its k-Nearest 
Neighbours  [28]  

Support Vector Machines (SVM) is based on the 
mapping of input vectors to a high-dimensional feature 
space where a hyperplane is constructed to separate data 
points into distinct classes  [29]. 

Logistic Regression (LR) is a binary classifier which 
uses a sigmoid function to map predictions to probabilities 
between 0 and 1. The classification is made based on 
whether the output exceeds a predefined threshold  [30]. 

No hyperparameter tuning was done during the 
comparison between algorithms. The dataset was divided 
in train and test sets in the proportion 80:20. The model 
chosen was XGBoost. Hyperparameter tuning was 
performed using grid search and they are presented in 
Table 1. 

 

 

 

Table 1. Hyperparameters used in XGBoost model for the classification 
of country, French wine producing region and grape variety. 

Hyperparameter Country Region Variety 

n_estimators 200 200 90 

max_depth 8 8 10 

reg_lambda 2 2 1.5 

learning_rate 0.1 0.1 0.1 

gamma 0 0 0 

colsample_bytree 0.6 0.6 0.6 

All the others were the standard parameters following 
the documentation  [24]. The database was divided in 
train, validation and test sets in the proportion 70:15:15, 
respectively, in a random and stratified fashion. To 
improve the training of the model, a space filling 
technique, Synthetic Minority Over-sampling Technique 
(SMOTE), was employed after split only on the training 
set.  

This approach uses the creation of synthetic samples 
in order to over-sample the minority class  [31]. This 
allows for better overall performance of the model, by 
balancing the class distributions. 

The metrics chosen to measure model performance 
were accuracy, ratio of correctly classified samples, and 
specificity, probability of a negative sample being 
predicted as negative by the algorithm. 

3. Results and discussion 

3.1. Elemental composition analysis in wine 
samples  

This research was conducted using a database 
comprising of 19431 MWP from wines deriving from 
international competitions as well as from commercial 
origin. They were distributed in 52 different countries, 290 
wine producing regions and 264 different main grape 
varieties. As multivarietal wines were present in the 
database, when referencing the main grape variety in this 
study, it is the variety present in the highest percentage. 
This repartition is illustrated in  

Figure 1.  

Because of the diverse origin and varietal composition 
of the samples, the elemental concentration had great 
variability. This behaviour may be also influenced by the 
different vinification techniques employed and 
environmental conditions. When comparing to the existing 
literature, variations within the same vineyard  [12] and 
country  [32] were recorded. The values found in our set 
are in agreement to the ranges offered in literature for 
macro, micro and trace elements. Some of these ranges are 
show in Figure 2, where the difference of concentration 
between categories is also explored. 

In Figure 2, the difference of concentration between 
classes for a same element is visible. For readability, not 
all elements were shown but this difference was confirmed 
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for all elements by one-way ANOVA. These elements 
were chosen because they exemplify the three groups of 
mineral elements present in wine: macro, micro and trace 
elements. 

In regard to macronutrients, there are essential and 
non-essential elements for plant growth. Potassium, 
calcium and magnesium are part of the first group, with 
their origin associated to the soil, as the rootstock 
distribute throughout the plant until the grapes  [12], but 
also with cultivation practices  [33]. Sodium is a non-
essential macronutrient with the origin associated with soil 
and proximity to the sea  [34]. They were found to 
contribute in the origin classification of French  [33], 
Spanish  [35] and Argentinean  [34] wines as well as 
improving distinction of groups when associated to rare 
earth elements  [36].  

Iron, manganese, nickel, copper and zinc are part of 
the essential micronutrients and chromium, cobalt and 
aluminium, the non-essentials. They have a natural origin, 
soil, but also are influenced by anthropogenic 
sources [15,37]. One example is the material which the 
wine may have contact with, stainless steel, bronze, or 

brass may influence elemental content differently  [37]. 
Pesticides and phytosanitary products are another source 
as they may contain Cu, Zn, Ni, Mn  [38]. These elements 
may also interfere in wine quality as they may be 
responsible for haze formation, such as Cu, Fe, Mn, Al, Ni 
and Zn, with the first tree also participating in reactions 
during maturation that impact acetaldehyde content  [38]. 
It is also hypothesized, for concentration larger than 
1mg/L, that Cu may contribute to a metallic taste in the 
final product  [37]. 

Lastly, two trace elements were represented in this 
plot, lanthanum and yttrium. They are part of the rare earth 
elements which is a group considered as markers of origin 
and variety, therefore used in their classification  [39–42]. 
Their content is extremally impacted by the use of 
bentonite  [43,44], used for wine clarification and 
stabilization during its production, and they alone do not 
outperform the combination of macro, micro and other 
trace elements  [36]. 

 

 

 
 

Figure 1. Repartition of the 19431 analysed wines in the databased used in this study. It was done based on wine type (a), country (b), grape variety (c), 
and French wine region (d). Unlabelled wines as well as labels with less than 200 occurrences are grouped in the "Others" label. For the coloured version, 
the reader is invited to check the online version of this document. 
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Figure 2. Distribution of the log-transformed concentration for Na, Mg, Al, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y and La. The categories compared are, 
from top to bottom, country of origin, with labels France, Spain, Italy, Switzerland and Portugal; French region, labels being Beaujolais, Rhone Valley, 
Champagne, Languedoc and Bordeaux; and main grape variety, labels are Chardonnay, Gamay, Syrah, Merlot and Cabernet Sauvignon. The whiskers in 
the boxplot correspond to 1.5 the interquartile range, the horizontal line in the box is the median. For the coloured version, the reader is invited to check 
the online version of this document. 

 

All of these factors contribute to the differences 
presented in Figure 2. It is evident, when comparing 
categories per element in each graph, that different 
elements will distinguish a category from the others. Some 
clear examples are the region of Champagne, represented 
in yellow on the second graph and the Gamay variety, 
coloured red, on third graph. These are two distinct 
categories as the Champagne is mainly composed of 
sparkling wines with defining and regulated viticultural 
practices, and the Gamay is a variety specific to the 
Beaujolais region. These particularities only contribute to 

the separation of these categories and shed light to the 
previous origins of minerals listed. 

Additionally, when comparing variety and region, it is 
also important to bring the distinction of winemaking 
methods between red, white and rosé wines. This is 
indicative of different metal contents which has already 
been explored in other studies  [45,46]. In Figure 2, 
Gamay, a typical red variety shows itself less concentrated 
in Na, but more in Mn, Fe, Co, Ni and Cu when compared 
to the other groups. Chardonnay, usually employed in 
white wine, is more concentrated in Na, Al, and Y while 
less in Mg, K and Fe.  
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Because of these differences in concentration, it was 
envisioned to use the MWP to distinguish the categories of 
wines in our database. This has been made for smaller 
datasets  [18,19,34–36,41,47] with various chemometrics 
and ML methods, i.e. neural networks  [18], random 
forest  [19] and orthogonal partial least squares 
discriminant analysis  [13]. The variety of techniques that 
may be employed motivates an initial selection of a ML 
algorithm before the development of the model.  

3.2. Machine learning algorithm selection 

As to assure the most adequate ML strategy, the AUC of 
the binary classification for each label was calculated. This 
was repeated 10 times. The results were averaged and are 
shown in  

Table 2. 
Table 2. Comparison between six ML models tested for classifying wine 
origin and grape variety. The average AUC score was computed for 10 
iterations for each label. The best performing model for each category, 
based on the highest AUC, is in bold.  

Model 
Mean AUC 

Country French Region Grape Variety 

RF 0.954 0.952 0.872 

k-NN 0.846 0.860 0.740 

SVM 0.963 0.949 0.891 

LR 0.935 0.911 0.863 

XGB 0.980 0.970 0.923 

ANN 0.935 0.910 0.859 

These values show promising results for all of the 
models, as all were close to 1. XGB presents itself as the 
most adapted model for the classification of our dataset 
and therefore was optimized, by means of hyperparameter 
tuning, for each category classification.  

3.3. Origin and variety classification 

The model’s performance in the validation and tests sets 
for each category are shown in  
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Table 5. The metrics chosen were accuracy (Acc) and 
specificity (Spc). The model presents great results for the 
binary classification of countries and regions, reaching up 
to 99% of accuracy for multiple labels during validation as 
well as testing. This attest for the robustness of the model 
for predicting a wine’s origin. 

In regard to country classification, it is remarkable 
that both metrics are always superior to 90%. Other studies 
have attempted country classification notably Forina et al., 
which also had the largest sample size to our knowledge 
(1188 wines)  [48]. The ML algorithm used in our study 
had more samples as well as outperformed theirs when 
comparing the specificity, mean of 90% versus 80%. This 
attest to the reliability of our model to identify a negative 
sample. 

 
Table 3. Accuracy (Acc) and specificity (spc) of the prediction of the 
validation (val) and test sets for country classification using XGB. The 
values presented are the mean of 10 iterations. 

Country Accval Acctest Spcval Spctest 

France 94.4% 93.9% 91.2% 93.0% 

Italy 96.8% 92.2% 97.5% 92.2% 

Spain 97.9% 92.3% 98.3% 92.4% 

Switzerland 99.1% 97.0% 99.3% 97.1% 

Portugal 98.2% 94.9% 98.5% 94.9% 

South Africa 99.2% 95.8% 99.4% 95.9% 

Australia 99.7% 98.4% 99.8% 98.5% 

Brazil 99.8% 98.7% 99.9% 98.8% 

Canada 99.6% 99.0% 99.7% 99.0% 

Romania 99.1% 94.5% 99.3% 94.5% 

Moldova 99.4% 96.8% 99.5% 96.8% 

Hungary 99.1% 95.7% 99.2% 95.8% 

https://ives-openscience.eu/ives-conference-series/


45th OIV Congress, France 2024 – available on IVES Conference Series 

 

 7 

Greece 98.9% 93.1% 99.2% 93.2% 

Bulgaria 99.1% 95.5% 99.3% 95.6% 

Austria 99.0% 94.8% 99.3% 94.8% 

Germany 99.1% 90.9% 99.3% 91.0% 

Belgium 99.6% 91.5% 99.7% 91.5% 

Slovakia 99.1% 91.7% 99.3% 91.7% 

Within a country, there may be different regions known 
for their wine production. This leads to wines in a same 
country having different mineral fingerprints, as they also 
correlate to the region of production. This is a subject 
explored in plenty in the literature in the distinction of 
different countries regions, such as Italy  [49], 
Romania  [47] and China  [50]. 

To delve deeper in this subject, we have also classified 
French wines coming from 13 different regions. 
Remarkable accuracy and specificity are achieved, 
surpassing 87% for all datasets. These values are in 
agreement with those found by Wu et al.  [33].  

 

 

 

 

 

 

 

 

 

 

 

 
Table 4. Accuracy (Acc) and specificity (spc) of the prediction of the 
validation (val) and test sets for French region classification using XGB. 
The values presented are the mean of 10 iterations. 

Region Accval Acctest Spcval Spctest 

Bordeaux 95.8% 95.6% 96.0% 95.5% 

Beaujolais 98.1% 97.9% 98.5% 97.9% 

Languedoc 92.4% 90.2% 93.7% 90.1% 

Rhone Valley 94.3% 92.1% 95.6% 92.4% 

Provence 94.9% 91.1% 95.8% 91.0% 

Southwest 
France 

94.5% 87.1% 95.8% 87.1% 

Champagne 99.3% 98.8% 99.5% 98.9% 

Burgundy 96.4% 92.4% 96.9% 92.5% 

Alsace 98.0% 95.7% 98.4% 95.9% 

Loire Valley 95.7% 88.1% 96.8% 88.1% 

Roussillon 98.2% 92.6% 98.7% 92.7% 

Savoie 99.0% 96.4% 99.2% 96.4% 

Corsica 99.6% 94.8% 99.7% 94.9% 

As shown by many different studies in the literature, a 
wine’s elemental profile is a source of information to 
distinguish the grape varieties [13,51–53]. Nonetheless, 
these studies are limited geographically, so evaluating 
international samples contributes to the knowledge already 
created in the literature.  

In  

 

 

 

 

 

 

 

 

 

 

 

Table 5, the accuracy and specificity of the validation 
and test sets are detailed. Notable results are obtained with 
values surpassing 70% for the test set. Comparing to the 
previous tables, an increase in the difference between the 
metrics of validation and test sets is seen. This may be due 
to many factors such as the disclosure of varieties not 
being mandatory in the labels nor their percentages if the 
wine is multivarietal  [54]. Additionally, the rootstock is 
another factor that may impact the uptake of minerals and, 
consequently, the MWP  [55]. Despite these factors, the 
algorithm still has impressive results for varietal 
distinction, which shows an importance of the grape 
variety to a wine’s composition. 

 

 

 

 

 

 

 

 

 

 

 
Table 5. Accuracy (Acc) and specificity (spc) of the prediction of the 
validation (val) and test sets for main grape variety classification using 
XGB. The values presented are the mean of 10 iterations. 

Variety Accval Acctest Spcval Spctest 

https://ives-openscience.eu/ives-conference-series/


45th OIV Congress, France 2024 – available on IVES Conference Series 

 

 8 

Gamay 97.6% 97.2% 98.5% 97.6% 

Chardonnay 90.4% 88.1% 91.1% 87.6% 

Merlot 91.9% 91.6% 92.5% 91.9% 

Syrah 90.2% 83.1% 91.8% 82.8% 

Grenache noir 90.1% 83.4% 91.5% 82.9% 

Cabernet Sauvignon 88.4% 77.8% 89.9% 77.8% 

Pinot noir 92.4% 83.2% 93.5% 83.3% 

Sauvignon blanc 95.0% 90.8% 95.8% 90.9% 

Muscat 95.6% 87.4% 96.1% 87.4% 

Cabernet Franc 92.2% 75.6% 93.3% 75.6% 

Cinsault 96.1% 87.9% 96.7% 87.8% 

Grenache blanc 95.4% 84.6% 95.9% 84.6% 

Viognier 95.9% 76.3% 96.5% 76.3% 

Malbec 97.0% 86.5% 97.4% 86.6% 

Grenache 96.1% 82.9% 96.5% 82.8% 

Cinsault noir 96.3% 82.4% 96.7% 82.5% 

Riesling 98.3% 89.4% 98.5% 89.4% 

Carignan noir 96.7% 83.7% 97.1% 83.7% 

Pinot meunier 98.5% 93.7% 98.7% 93.8% 

Pinot gris 97.4% 87.3% 97.7% 87.3% 

Sémillon 96.9% 84.6% 97.3% 84.6% 

Rolle 96.1% 84.3% 96.5% 84.3% 

Tempranillo 98.7% 94.9% 98.9% 94.9% 

Mourvèdre 92.2% 74.8% 92.5% 74.9% 

Vermentino 96.6% 80.5% 97.0% 80.5% 

Gewurztraminer 98.2% 86.6% 98.4% 86.6% 

Pinot blanc 97.3% 84.8% 97.6% 84.8% 

Roussanne 97.4% 79.9% 97.6% 80.0% 

Chenin Blanc 97.9% 84.7% 98.2% 84.7% 

When compared to the literature, the studies are often 
restricted in size, with the number of samples varying from 
less than hundreds of samples up to a thousand. The 
creation of a large MWP dataset permits the development 
of a polyvalent model for origin verification of wine. 

This study's findings highlight the impressive 
predictive capabilities in identifying the country, region of 
wine production and variety of a wine. Future prospects 
should focus in the correlation of wine production 
practices, microclimate and wine’s sensory attributes in a 
sub-regional scale in order to further deepen the 
knowledge about the MWP’s formation and impact. Its 
association with AI emerges as a vital tool for such 
investigations. 

Using a large and diverse dataset, this study 
developed Extreme Gradient Boosting models that 
achieved mean accuracies of 95% for country 
classification, 93% for French wine region classification, 
and 85% for grape variety classification. All of the test sets 
accuracies are illustrated in  

Figure 3. Additionally, the model specificity reached 
up to 99% when assessing a wine’s origin, based solely on 
its MWP. 

Integrating MWP and AI is essential for advancing 
the wine industry, addressing the evolving demands of 
contemporary consumers for detailed origin authentication 
beyond mere geographical regions. 
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Figure 3. Graphical representation of the classification accuracy for countries (top) and French wine regions (bottom). The accuracy was calculated based 
on the test set. The scale is not representative of the size of the countries. Mean total accuracy for country is 95% and for region, 93%. 
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