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Abstract. Comprehensive evaluation of grape composition at winery receiving areas often requires multiple
measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming
and involve sample preparation. Recent advances in non-destructive sensing technologies, particularly
hyperspectral imaging (HSI), offer promising alternatives for rapid and reliable grape quality assessment. In this
context, the present study proposes a novel, non-invasive methodology for the characterization of winegrape
composition directly on sorting tables. Specifically, hyperspectral imaging (HSI) in the visible to near-infrared
range (400-1000 nm), combined with multivariate statistical analysis and artificial intelligence (Al), was applied
to estimate key compositional parameters including total soluble solids (TSS), pH, chromatic characteristics,
anthocyanins, malic acid, tartaric acid, and yeast assimilable nitrogen (YAN). The highest predictive
performance was obtained for pH (R%*cv = 0.90), with malic acid (R*cv = 0.76) and total soluble solids (TSS;
R%cy = 0.64) also showing strong predictive capacity. For the remaining parameters, models achieved moderate
R?cy values (0.30-0.50), sufficient to support binary classification between high and low levels. These findings
highlight the potential of HSI as a powerful approach for grape quality assessment and decision-making in
outdoor settings, such as grape sorting tables.

1. Introduction non-destructive methods to assess quality during grape
receival.
Nowadays, assessment and sampling for maturity at the
weightbridge of a winery are usually carried out using Hyperspectral imaging (HSI) is a non-destructive
automated sampling devices (e.g. Maselli mechanical core technology in which a camera records the reflected light

sampler) or smaller manual devices. Although widely
adopted, these methods require multiple measurements to
ensure representativeness [1], often resulting in delays
during unloading and prolonged exposure of grapes to
suboptimal environmental conditions—factors that could
adversely affect fruit integrity and overall wine quality.

from the target in specific regions of the electromagnetic
spectrum in several tens or hundreds of narrow
wavelengths. HSI integrates imaging and spectroscopy to
obtain spatial and spectral data in one system [3]. The
interaction between light at each wavelength and the
different materials can be variable. When this interaction

Among the main compositional parameters, total soluble is measured, a unique individual ‘fingerprint’ called
solids (TSS), yeast assimilable nitrogen (YAN), pH and spectral signature is obtained. This holds distinctive
concentrations of the main organic acids in the berry, such quantifiable information that enables to reveal sample’s
as tartaric and malic acid, as well as the anthocyanin and hidden information by identifying “non-visible™ features,
total phenol concentrations are usually analyzed using such as chemical composition [3]. Its contactless and
spectroscopy and wet chemistry procedures [2]. These solvent-free nature, coupled with fast acquisition rates,
analytical methods are destructive, time-consuming and makes it particularly suitable for real-time applications in
require sample preparation in most instances. Therefore, it both vineyard and winery environments. Nevertheless,

would be valuable for wineries to have rapid, robust and challenges remain in terms of system cost and the
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complexity of data analysis, although recent developments
in Al and user-friendly software are significantly
mitigating these constraints.

Hyperspectral imaging (HSI) has been extensively
explored over the past decade as a powerful non-
destructive technique for the inspection of food and
unprocessed agricultural products [4, 5]. Its dual capability
to perform both predictive analysis (via regression) and
classification has rendered it particularly valuable in the
agri-food sector, where it has been widely applied to assess
fruit ripeness and composition [6,7]. In the case of grape
berries, various studies have demonstrated the potential of
contactless HSI in the visible and short-wave near infrared
(Vis-SW NIR) range under laboratory conditions. For
instance, Vis-SW NIR data —spanning from 380 to 1028
nm— acquired at a fixed distance from intact berries
enabled to fingerprint the anthocyanin profile of eight
different Vitis vinifera L. red cultivars [7]. In another study
[8], contactless Vis-SW NIR (570-1000 nm) and NIR
(1100-2100 nm) spectroscopy, performed at 25 cm from
grape berries (under laboratory conditions) proved
effective to estimate total soluble solids (TSS) (R2P ~0.90;
SEP~1.60 °Brix) and 22 free amino acids (with R2P
varying from 0.30 to 0.66). Very recently, HSI data in the
range from 400-1000 nm and NIR spectroscopy in the
range 1200-2100 nm proved effective to estimate the
volatile composition (up to 20 different volatile
compounds were quantified) of Vitis vinifera L.
Tempranillo Blanco berries during ripening under
laboratory conditions [9, 10].

Although significant progress has been made, most of
the research has been carried out under controlled
laboratory conditions, where standardized distance to the
target, consistent lighting, and stable environmental
factors facilitate optimal hyperspectral image acquisition.
To bridge this gap, recent research efforts have focused on
adapting HSI technology for in-field and on-site
applications. For example, a push-broom Vis-SW NIR
HSI system mounted on a mobile platform was
successfully employed in vineyards to acquire on-the-go
measurements at approximately 5 km/h and 30 cm from
the canopy, with spectral data correlated to laboratory
analyses of cluster and berry samples of Tempranillo (Vitis
vinifera L.) at different sampling dates from veraison to
harvest during two seasons [11, 12].

Given that the receiving-crushing area of a winery can
also be considered an outdoor scenario—characterized by
variable temperature, humidity, lighting conditions, and
inconsistent distances to the grape clusters—this study
builds upon previous research by developing a modular
structure to hold and operate an HSI system and additional
set up, including artificial lighting and acquisition system,
intended for its installation above sorting tables in
commercial wineries. The aim of this work is to enable the
in situ estimation of key compositional parameters of
incoming grape loads. As such, HSI in the Vis-NIR (400-
1000 nm) in combination with Al methods, has been used
to build estimation models for a wide range of grape
compounds in berries of grapevine Vitis vinifera L.
Tempranillo. This approach may represent a significant

step forward in both scientific and technological terms, as
it broadens grape quality evaluation beyond conventional
metrics of technological maturity, while also establishing
the basis for the future non-invasive assessment of
secondary metabolites such as phenolic and volatile
compounds, highly related to wine quality but typically
analyzed through time-consuming, expensive, and
destructive laboratory procedures that require complex
sample preparation and advanced instrumentation (e.g.,
HPLC/UPLC and GC-MS).

2. Materials and methods

The study was conducted in three main stages. The first
stage involved hyperspectral imaging (HSI) data
acquisition along with chemical analysis of the imaged
grape samples. The second stage comprised the processing
of hyperspectral images to automate the extraction of
grape berry spectra, followed by the compilation of
datasets. In the final stage, the dataset was used to train
various predictive models using multivariate statistical
analysis combined with artificial intelligence (AI).

2.1. Experimental layout

The Vitis vinifera L. Tempranillo clusters were collected
during the 2024 season in a vineyard owned by La Rioja
Government, located in Finca La Grajera (Logrofio, La
Rioja, Spain). The exact location of the vineyard plot is:
42°26°46.6°" north latitude 2°30°41.6*” west latitude; 450
m above sea level. The grapevines were grafted onto
Ritcher 110 rootstock and were trained to a vertically shoot
positioned system (VSP). The vineyard was planted in
2020 in an NW-SE orientation, and with a spacing between
rows and within the row of 2.80 m x 1.20 m, respectively.
The clusters were hand-picked randomly. Samples were
collected from veraison to postharvest along seven dates:
12 August 2024, 19 August 2024, 24 August 2024, 2
September 2024, 9 September 2024, 16 September 2024
and 30 September 2024. For each date, the clusters were
handpicked and immediately stored at -20°C at the
laboratories of the Institute of Sciences of Vine and Wine
(ICVV, Rioja, Spain) until sample preparation.

2.2. Vis-SW NIR hyperspectral imaging

Prior to image acquisition, the clusters were allowed to
thaw in a cold room (4°C) and subsequently to ambient
temperature (~20°C). The clusters were dried prior to the
acquisition with a kimwipe paper and were not further
manipulated or destemmed.

Hyperspectral images were acquired at winery premises
using a push broom Resonon Pika L VNIR hyperspectral
imaging camera (Resonon, Bozeman, MA, USA)
connected to an industrial computer. The spectral
resolution of the camera was 2.1 nm (300 bands from 400
to 1000 nm), with 300 pixels of spatial resolution. External
illumination has been provided with twelve 45W tungsten
halogen lightbulbs. Prior to the hyperspectral
measurement, a Spectralon® (Labsphere, Sutton, NH,
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USA) white reference (a surface with a reflectance over
95%) was presented to the camera simulating the same
position and distance to the fruit. A dark reference
measurement was also performed to obtain the inherent
electronic noise. The spectral light intensity values
collected by the camera were translated into reflectance
(R) with Equation 1:

GA) -DM)
W(@®) -D®)
where A is a wavelength (in nanometers), G is the intensity
of the light reflected by the grapes (in nanometers), W is

the intensity of the light coming from the white reference
(in nanometers), and D is the dark current (in nanometers).

RQ) = (1)

To carry out the HSI acquisition, a holding structure
was built and placed above the sorting table of the
University of La Rioja (UR, Rioja, Spain) winery (Figure
1). In this structure, the HSI camera with the external
illumination system were installed perpendicularly to the
sorting table at 1 m distance.

A
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\

Figure 1. Hyperspectral imaging setup with Resonon Pika L VNIR
camera and tungsten lighting above the sorting table, and Spectralon®
white reference.

The hyperspectral images were acquired by placing the
clusters on the sorting table, allowing at least 2 cm of
separation between them to facilitate the later
segmentation of the region of interest (ROI) corresponding
to each one of the clusters.

For each one of the hyperspectral images acquired, a
10x10cm Spectralon® square was placed before the
samples, to have an optimal reference for the exact
environmental lighting in that moment. The number of
grape clusters included in a single image ranged from five
to eight, depending on the bunch size and the number of
samples of a given date. The bunches were marked with a
small tape in the peduncle alternating colors red, brown
and white, to ensure the same order was preserved. This
tape was removed from the spectra in later processing
stages. For each group of bunches, two opposite sides were

scanned in individual images, preserving the same order
and conditions.

The camera settings were configured at 60fps (16.33
ms per frame from the theoretical 16.66 ms, accounting for
the camera processing time) and 3 dB of gain at the sensor.
These parameters were identical in each session, because
the lighting conditions were controlled and the external
influence was kept to a minimum by blocking direct light
on both sides of the sorting table. The inevitable variations
were compensated with the Spectralon®.

A total of 18 hyperspectral cubes were acquired for
each side, for a total of 36, not accounting for black or
other spectra acquisition for calibration. These images
contained a total of 97 individual clusters.

2.3. Analysis of grape composition

Once imaged, the clusters were destemmed and berries
crushed manually. Thereafter, the samples were
centrifuged (Sorvall Lynx 4000 Centrifuge, Thermo
Scientific, Madrid, Spain).

Total soluble solids (TSS) and pH were measured
using conventional OIV methods [13]. TSS was
determined with a temperature compensating Quick-Brix
60 digital refractometer (Mettler Toledo, Columbus, OH,
USA) adding a few drops of the centrifuged must, and
expressed as °Brix. pH was measured with a PH 8 PRO
benchtop pH meter (XS Instruments, Codogno, LO, Italy).

Malic acid, tartaric acid, anthocyanins and YAN
amounts were determined using an enzymatic
multiparameter analyser BioSystems Y-200 (BioSystems,
Barcelona, Spain).

The chromatic characterization of the samples,
including color intensity (CI), Total Polyphenol Index
(TPI) —Iz2s0—and colorimetric parameters (L, a, and b*),
was carried out using an Agilent Cary 60 UV-Vis
spectrophotometer (Agilent Technologies, Santa Clara,
CA, USA).

2.4. Spectral data analysis

The HSI data were processed using Python 3.12
alongside widely adopted computer vision and machine
learning libraries, including OpenCV [14], scikit-image
and scikit-learn.

To automate the extraction of spectral signatures for
each sample in the images, a representative subset of
images was decomposed into all the individual wavelength
bands and then saved as greyscale images. This allowed
the identification of the optimal spectral range for
distinguishing between the pixels belonging to the sorting
table and the pixels belonging to the berries conforming
the clusters. The most effective wavelengths in our setup
ranged from 860 to 920 nm, with the optimal band varying
slightly across acquisition sessions.

Otsu's thresholding method [15], combined with basic
morphological operations to remove noise and small
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regions, was employed to isolate the region of interest
(ROI) corresponding to each individual sample cluster.

The resulting binary masks were then saved in
combination with the RGB components (chosen at 640
nm, 550 nm and 460 nm respectively) of the hyperspectral
image, then manually reviewed and corrected when
necessary. Histogram equalization was applied to each
band individually to improve the contrast of the images to
review. Average spectra were subsequently calculated
based on the pixels within the ROIs. A side-by-side
comparison illustrating the resulting rectangular ROIs
after segmentation is provided in Figure 2.

Figure 2. a) Contrast corrected RGB portion of a hyperspectral image
and b) Rectangular regions covering each one of the ROIs.

Regression models using partial least squares (PLS),
machine learning and artificial intelligence (ML/AI)
algorithms have been built from the HSI data for all grape
components, using cross validation as the main criteria,
and performance metrics (R?, RMSE) computed and
compared. Due to the noisy nature of spectral data, a
sizable amount of preprocessing becomes necessary in
both classic and IA based methods [16]. Several
preprocessing methods were evaluated in this study to
enhance spectral data quality and modeling performance.
These included the Savitzky—Golay filter [17] with a first-
degree derivative and a window size of 15 for TSS, 19 for
pH and for 17 tartaric acid. This filtering technique
effectively reduced the intensity component of noise.
Additionally, Mean Centering, Standard Normal Variate
(SNV), and Autoscaling were applied to normalize the
data and minimize variability unrelated to the chemical
composition of the samples.

For the machine learning models, a hyperparameter
optimization strategy based on a nature-inspired algorithm
was employed in order to improve model performance
while maintaining computational efficiency. Specifically,
we used the Bat Algorithm (BA), which is inspired by the
echolocation behavior of microbats, which use frequency
tuning and loudness adaptation to efficiently explore their
environment and converge toward optimal solutions [18].

The optimization procedure was configured to run for
a maximum of 50 generations (epochs), with each
generation comprising a population of 10 candidate
solutions. An early stopping criterion based on
performance stagnation was employed, terminating the
search if no improvement was observed over 5 consecutive
generations. This strategy effectively balances exploration
and exploitation within the hyperparameter space. The
algorithm was applied to tune only the most influential
hyperparameters for each model, thereby minimizing the
risk of overfitting and enhancing generalization
capabilities. Model performance during optimization was
assessed using 10-fold cross-validation, with the mean
squared error (MSE) serving as the scoring metric. This
approach ensures that the selected models exhibit
consistent performance across different data subsets, not
just the training data.

Overall, this nature-inspired optimization strategy
provided an effective way to approach near-optimal
solutions with fewer evaluations than exhaustive grid
search methods, enabling faster development with limited
computational resources.

3. Results and discussion

3.1. Grape composition

The parameters studied were well represented with an
adequate variability; samples being taken from veraison to
postharvest (Figure 2). Likewise, TSS varied between 10.8
°Brix to 27.0 °Brix, while pH ranged from 3.16 to 4.58.
Tartaric acid concentrations spanned from 0.84 to
437¢g/L, and malic acid from 1.73 to 8.58 g/L.
Anthocyanin content showed a wide range, from 23 to
265 mg/L. Yeast assimilable nitrogen (YAN) levels varied
markedly, between 35 and 512mg/L. Chromatic
parameters also exhibited notable variability: total
polyphenol index (TPI) ranged from 8.27 to 37.78 UA, and
color intensity (CI) from 1.40 to 7.42 UA. In terms of
CIELAB coordinates, L* values ranged from 74.73 to
93.49, a* from 2.46 to 17.88, and b* from 1.04 to 13.29,
capturing the evolution of grape skin color attributes over
time.

3.2. Regression models for grape composition
prediction

A baseline model was generated for each of the
parameters using PLS technique, widely used in
hyperspectral data processing due to the inherent reduction
in dimensionality. While PLS regression remains a
standard technique for handling collinear spectral data and
performing dimensionality reduction [19], Random Forest
Regressor (RF), Multilayer Perceptron Regressor (MLP),
and other artificial intelligence driven approaches offer
several notable advantages. These include an enhanced
capability to model complex nonlinear relationships
between spectral variables and grape compositional traits,
increased robustness to noise and irrelevant variables due
to intrinsic feature selection and ensemble averaging, and
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the ability to process high-dimensional spectral datasets
without requiring stringent prior dimensionality reduction
[20, 21].

Table 1 shows the models that provided the best results
for cross-validation (CV), R%*cv > 0.4, for Total Soluble
Solids (TSS), pH, tartaric and malic acid. R? values
between 0.30 and 0.50 are considered to provide good
separation between high and low values. R? values
between 0.50 and 0.70 provide good separation between
high, medium, and low values. R? values between 0.70 and
0.90 are considered a good adjustment, and, finally, R?
values >0.90 provide an excellent adjustment [9].

When RF and MLP models failed to achieve adequate
predictive performance, PLS regression was employed as
an alternative modeling approach to improve prediction
accuracy. Among these, the best results were obtained for
pH, with a RF model achieving a cross-validation
coefficient of determination (R* cv) of 090 and a
RMSECV of 0.11, indicating an excellent, predictive
accuracy. A less robust outcome was observed for total
soluble solids (TSS), where a MLP model reached an R*cv
of 0.64 and RMSEcv of 2.40, indicating a good separation
between high, medium, and low values. For malic acid, the
PLS model performed slightly better, with an R%*cv of 0.76
and RMSEcv of 0.59, which corresponds to a good level
of model adjustment. In contrast, tartaric acid and the total
polyphenol index (I2s0) yielded more modest predictive
capacity, with R? values of 0.41 and 0.42, respectively, still
offering meaningful discrimination between high and low
concentration ranges, though not suitable for precise
quantification.

Table 1. Cross-validation of the best models obtained to predict the grape
composition parameters from HSL

Parameters Model RMSEcv R%cv
Total soluble solids (° Brix) MLP 2.40 0.64
pH RF 0.11 0.90

Tartaric acid

(g/L tartaric acid) RE 0.63 0.41
Malic acid

(/L malic acid) PLS 059 0.76
Total Polyphenol Index (2s0) PLS 4.24 0.42

MLP: Multi Layer Perceptron. RF: Random Forest. PLS: Partial Least
Squares. R%cy: determination coefficient of calibration. RMSEcv: root
mean square error of cross validation.

Several other grape composition parameters exhibited
limited predictive performance, with coefficient of
determination (R?cv) values falling below 0.40. These
include yeast assimilable nitrogen (YAN), with an R%*cv of
0.35 and an RMSEcv of 75, and the color intensity (CI),
for which the model achieved an R’cv of 0.30 and an
RMSEcv of 0.97. Similarly, total anthocyanin
concentration (R?cv=0.31; RMSEcv = 44), as well as the
CIELab color coordinates L* (R%cv = 0.30; RMSEcv =
3.03), a* (R%cv = 0.31; RMSEcv = 3.13) and b* (R%*cv =
0.62; RMSECV = 1.38), showed lesser predictive
capacity, despite the comparatively higher R%cv value of
the b*. These results fall within the category of models that

provide only a basic separation between high and low
values (0.30 < R?%cv < 0.50). Notably, all models for these
parameters were developed using PLS regression, as the
implementation of machine learning algorithms did not
result in improved predictive accuracy.

Figure 3 displays the best prediction models for grape
parameters showing adequate prediction capacity from
hyperspectral imaging. The samples gathered in the
regression plots for pH (Figure 3a), total soluble solids
(Figure 3b) and malic acid (Figure 3c) show a really good
fit along the correlation lines and mostly fitted between the
95% confidence bands. A considerably large and evenly
distributed range for the studied parameters was covered
by the samples from the experiment.
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Figure 3. Regression plots for pH (a), Total Soluble Solids (b) and Malic
acid (c) using the best models generated from grape clusters hyperspectral
images in the VIS + SW-NIR range. Solid line represents the regression
line and dotted line refers to the 1:1 line. Prediction confidence bands are
shown at a 95% level (semitransparent area). Different dot colors
correspond to different sampling dates (lower hue indicates earlier dates).
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The tendency exhibited in Figure 3 is consistent with
expected physiological trends during grape ripening,
where malic acid degradation is accompanied by rising pH
levels and an increase in total soluble solids due to sugar
accumulation.

The results of this work are consistent with, albeit
slightly below, the state-of-the-art in hyperspectral
imaging (HSI) applications for grape quality prediction
under laboratory or field conditions [9, 11, 12].

Better predictive performance for total soluble solids
(TSS) has been consistently demonstrated in previous
research, with R?CV values nearing 0.90 [9, 11, 12]. In
contrast, the model developed in the present study yielded
a lower R?cv of 0.64, which still permits effective
stratification of grape samples into three categories (low,
medium, and high °Brix). Such categorical discrimination
remains highly valuable for practical applications at grape
reception in the winery, facilitating informed decisions
regarding batch classification and optimal vinification
strategies.

PLS regression models reported in [12] achieved
higher R%cv values of 0.84 for malic acid and 0.56 for
tartaric acid compared to those obtained in the present
study (0.76 and 0.41, respectively). However, their
informed RMSEcv values were 0.90 g/L for malic acid and
1.29 g/L for tartaric acid, while the present study achieved
lower RMSEcv values, 0.59 g/L and 0.63 g/L,
respectively, indicating improved predictive accuracy in
absolute error terms despite lower coefficient of
determination values.

Noteworthy, the predictive performance achieved for
pH in this study (R*cv = 0.90; RMSEcv = 0.11) stands out.
This result not only falls within the category of models
with an excellent fit but also surpasses previously reported
values in the literature (R%*cv = 0.73; RMSEcv = 0.20)
using PLS regression under field conditions with VIS-NIR
hyperspectral imaging [12].

Concerning chromatic parameters, prior literature have
reported superior predictive performance for anthocyanin
concentration, with R%cv values of 0.83 using support
vector machines (SVM) and 0.78 using PLS regression
models based on on-the-go hyperspectral imaging in
commercial vineyards [11,12]. Similarly, for the total
polyphenol index, an R%cv value of 0.44 was reported by
the same authors, which is comparable to the results
obtained in the present study.

However, several methodological and experimental
differences must be considered when interpreting these
outcomes. Contrary to prior studies that conducted
hyperspectral imaging on freshly harvested or field-
collected grape clusters [7, 11, 12], the hyperspectral data
in this study were acquired following the freezing and
subsequent thawing of the grape samples. This protocol,
implemented due to logistical and experimental
constraints, may have compromised tissue integrity,
thereby influencing the reflectance properties, particularly
within wavelength regions sensitive to water content,
pigment distribution, and surface structure. Such

alterations in spectral responses could partially explain the
diminished data quality, potentially limiting the accuracy
of predictive models derived from these images.

Another notable divergence from literature is the
choice of modeling approach. While most previous studies
employed PLS regression [7, 9, 12], the present research
explores the potential of RF algorithms and MLP, non-
parametric machine learning methods with several
advantages in the context of high-dimensional spectral
data [22, 23]. Unlike PLS, which primarily captures linear
relationships, RF and MLP are capable of modeling
complex, non-linear interactions and can automatically
identify and prioritize relevant spectral features, offering
improved generalization when appropriately trained.
Moreover, RF and MLP tend to be more robust to
multicollinearity, outliers, and non-Gaussian data
distributions, making it a valuable tool in scenarios where
spectral variability is high or dataset quality is
heterogeneous [24].

Despite the relatively modest performance observed
for certain chemical parameters, the use of RF, MLP and
similar artificial intelligence techniques represents a
strategic advancement in the application of HSI to
viticulture. As datasets grow in volume and diversity, and
as more sophisticated preprocessing and model-tuning
techniques are implemented, machine learning models are
expected to surpass traditional linear approaches in both
accuracy and adaptability—particularly for agricultural
applications [24, 25].

4. Conclusions

This preliminary study demonstrates the feasibility of
applying HSI combined with Al techniques to assess grape
composition with a non-destructive, rapid, and scalable
approach. Among the regression models developed, pH
prediction achieved the highest performance (R*cv = 0.90),
considered to provide an excellent adjustment. Notably,
the models developed for total soluble solids (TSS) and
malic acid achieved sufficient predictive power (R*cv =
0.64 and 0.76, respectively) to enable the reliable
classification of grape samples into three categories—low,
medium, and high values—thus offering wvaluable
decision-making support at grape reception. For other
compositional traits, including tartaric acid, yeast
assimilable  nitrogen, total  polyphenol index,
anthocyanins, color intensity and chromatic coordinates,
the models yielded R%*cv values between 0.30 and 0.50.
While these results do not allow for precise quantitative
predictions, they are nonetheless adequate to distinguish
between high and low concentration levels, providing a
useful basis for initial sorting and qualitative assessment.

Despite the relatively modest performance observed
for some chemical traits compared to other studies, the use
of Al techniques like Random Forest (RF) and Multilayer
Perceptron Regressor (MLP) represents a strategic
advancement in viticultural applications of HSI. As
datasets grow in volume and diversity, and as more
sophisticated preprocessing and model-tuning techniques
are implemented, machine learning models are expected to
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outperform classical chemometric methods in both
accuracy and adaptability—particularly for in-field, real-
time monitoring scenarios.

It is worth highlighting that this study is framed within
the HyperGrape project (PID2023-1505550B-100, funded
by MCIU/AEI/10.13039/501100011033 and by FEDER,
EU), which aims to overcome current limitations in the
assessment of grape composition and quality. Beyond the
parameters analyzed in the present work, the project’s
overarching objective is to develop robust, real-time, and
non-invasive methodologies for monitoring the evolution
of key phenolic (e.g. anthocyanins, flavonols, flavanols,
hydroxycinnamic acids, and stilbenes) and volatile (e.g.
terpenes, norisoprenoids, Cs compounds, and benzenoids)
compounds, in red and white grape cultivars, both in
winery and vineyard settings. In forthcoming studies, a
dual-camera system incorporating the Pika IR+ sensor will
be implemented, extending spectral coverage (400—1700
nm). This broader spectral window is expected to enhance
the system’s ability to capture complex chemical
signatures, thereby enhancing the accuracy and
adaptability of predictive models.

In conclusion, the integration of HSI sensors within the
crush pad environment, in combination with advanced Al-
driven modelling, holds the potential to generate rapid,
objective, and non-invasive predictions of grape quality
and composition. This, in turn, may enhance winemaking
practices by improving both perceived quality and
compliance with quality assurance standards. In the longer
term, the implementation of such technologies could
support the development of more transparent and data-
driven grape purchasing frameworks, reflecting the true
compositional value of the fruit and informed by the input
of key stakeholders across the wine value chain.
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