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Abstract. Comprehensive evaluation of grape composition at winery receiving areas often requires multiple 
measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming 
and involve sample preparation. Recent advances in non-destructive sensing technologies, particularly 
hyperspectral imaging (HSI), offer promising alternatives for rapid and reliable grape quality assessment. In this 
context, the present study proposes a novel, non-invasive methodology for the characterization of winegrape 
composition directly on sorting tables. Specifically, hyperspectral imaging (HSI) in the visible to near-infrared 
range (400–1000 nm), combined with multivariate statistical analysis and artificial intelligence (AI), was applied 
to estimate key compositional parameters including total soluble solids (TSS), pH, chromatic characteristics, 
anthocyanins, malic acid, tartaric acid, and yeast assimilable nitrogen (YAN). The highest predictive 
performance was obtained for pH (R²CV = 0.90), with malic acid (R²CV = 0.76) and total soluble solids (TSS; 
R²CV = 0.64) also showing strong predictive capacity. For the remaining parameters, models achieved moderate 
R²CV values (0.30–0.50), sufficient to support binary classification between high and low levels. These findings 
highlight the potential of HSI as a powerful approach for grape quality assessment and decision-making in 
outdoor settings, such as grape sorting tables.

1. Introduction 

Nowadays, assessment and sampling for maturity at the 
weightbridge of a winery are usually carried out using 
automated sampling devices (e.g. Maselli mechanical core 
sampler) or smaller manual devices. Although widely 
adopted, these methods require multiple measurements to 
ensure representativeness [1], often resulting in delays 
during unloading and prolonged exposure of grapes to 
suboptimal environmental conditions—factors that could 
adversely affect fruit integrity and overall wine quality. 

Among the main compositional parameters, total soluble 
solids (TSS), yeast assimilable nitrogen (YAN), pH and 
concentrations of the main organic acids in the berry, such 
as tartaric and malic acid, as well as the anthocyanin and 
total phenol concentrations are usually analyzed using 
spectroscopy and wet chemistry procedures [2]. These 
analytical methods are destructive, time-consuming and 
require sample preparation in most instances. Therefore, it 
would be valuable for wineries to have rapid, robust and 

non-destructive methods to assess quality during grape 
receival. 

Hyperspectral imaging (HSI) is a non-destructive 
technology in which a camera records the reflected light  

from the target in specific regions of the electromagnetic 
spectrum in several tens or hundreds of narrow 
wavelengths. HSI integrates imaging and spectroscopy to 
obtain spatial and spectral data in one system [3]. The 
interaction between light at each wavelength and the 
different materials can be variable. When this interaction 
is measured, a unique individual ‘fingerprint’ called 
spectral signature is obtained. This holds distinctive 
quantifiable information that enables to reveal sample’s 
hidden information by identifying “non-visible” features, 
such as chemical composition [3]. Its contactless and 
solvent-free nature, coupled with fast acquisition rates, 
makes it particularly suitable for real-time applications in 
both vineyard and winery environments. Nevertheless, 
challenges remain in terms of system cost and the 
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complexity of data analysis, although recent developments 
in AI and user-friendly software are significantly 
mitigating these constraints. 

Hyperspectral imaging (HSI) has been extensively 
explored over the past decade as a powerful non-
destructive technique for the inspection of food and 
unprocessed agricultural products [4, 5]. Its dual capability 
to perform both predictive analysis (via regression) and 
classification has rendered it particularly valuable in the 
agri-food sector, where it has been widely applied to assess 
fruit ripeness and composition [6,7]. In the case of grape 
berries, various studies have demonstrated the potential of 
contactless HSI in the visible and short-wave near infrared 
(Vis-SW NIR) range under laboratory conditions. For 
instance, Vis-SW NIR data —spanning from 380 to 1028 
nm— acquired at a fixed distance from intact berries 
enabled to fingerprint the anthocyanin profile of eight 
different Vitis vinifera L. red cultivars [7]. In another study 
[8], contactless Vis-SW NIR (570-1000 nm) and NIR 
(1100-2100 nm) spectroscopy, performed at 25 cm from 
grape berries (under laboratory conditions) proved 
effective to estimate total soluble solids (TSS) (R2P ~0.90; 
SEP~1.60 ºBrix) and 22 free amino acids (with R2P 
varying from 0.30 to 0.66). Very recently, HSI data in the 
range from 400-1000 nm and NIR spectroscopy in the 
range 1200-2100 nm proved effective to estimate the 
volatile composition (up to 20 different volatile 
compounds were quantified) of Vitis vinifera L. 
Tempranillo Blanco berries during ripening under 
laboratory conditions [9, 10]. 

Although significant progress has been made, most of 
the research has been carried out under controlled 
laboratory conditions, where standardized distance to the 
target, consistent lighting, and stable environmental 
factors facilitate optimal hyperspectral image acquisition. 
To bridge this gap, recent research efforts have focused on 
adapting HSI technology for in-field and on-site 
applications. For example, a push-broom Vis-SW NIR 
HSI system mounted on a mobile platform was 
successfully employed in vineyards to acquire on-the-go 
measurements at approximately 5 km/h and 30 cm from 
the canopy, with spectral data correlated to laboratory 
analyses of cluster and berry samples of Tempranillo (Vitis 
vinifera L.) at different sampling dates from veraison to 
harvest during two seasons [11, 12].  

Given that the receiving-crushing area of a winery can 
also be considered an outdoor scenario—characterized by 
variable temperature, humidity, lighting conditions, and 
inconsistent distances to the grape clusters—this study 
builds upon previous research by developing a modular 
structure to hold and operate an HSI system and additional 
set up, including artificial lighting and acquisition system, 
intended for its installation above sorting tables in 
commercial wineries. The aim of this work is to enable the 
in situ estimation of key compositional parameters of 
incoming grape loads. As such, HSI in the Vis-NIR (400-
1000 nm) in combination with AI methods, has been used 
to build estimation models for a wide range of grape 
compounds in berries of grapevine Vitis vinifera L. 
Tempranillo. This approach may represent a significant 

step forward in both scientific and technological terms, as 
it broadens grape quality evaluation beyond conventional 
metrics of technological maturity, while also establishing 
the basis for the future non-invasive assessment of 
secondary metabolites such as phenolic and volatile 
compounds, highly related to wine quality but typically 
analyzed through time-consuming, expensive, and 
destructive laboratory procedures that require complex 
sample preparation and advanced instrumentation (e.g., 
HPLC/UPLC and GC-MS). 

2. Materials and methods 

The study was conducted in three main stages. The first 
stage involved hyperspectral imaging (HSI) data 
acquisition along with chemical analysis of the imaged 
grape samples. The second stage comprised the processing 
of hyperspectral images to automate the extraction of 
grape berry spectra, followed by the compilation of 
datasets. In the final stage, the dataset was used to train 
various predictive models using multivariate statistical 
analysis combined with artificial intelligence (AI). 

2.1. Experimental layout 

The Vitis vinifera L. Tempranillo clusters were collected 
during the 2024 season in a vineyard owned by La Rioja 
Government, located in Finca La Grajera (Logroño, La 
Rioja, Spain). The exact location of the vineyard plot is: 
42º26’46.6’’ north latitude 2º30’41.6’’ west latitude; 450 
m above sea level. The grapevines were grafted onto 
Ritcher 110 rootstock and were trained to a vertically shoot 
positioned system (VSP). The vineyard was planted in 
2020 in an NW-SE orientation, and with a spacing between 
rows and within the row of 2.80 m × 1.20 m, respectively. 
The clusters were hand-picked randomly. Samples were 
collected from veraison to postharvest along seven dates: 
12 August 2024, 19 August 2024, 24 August 2024, 2 
September 2024, 9 September 2024, 16 September 2024 
and 30 September 2024. For each date, the clusters were 
handpicked and immediately stored at -20ºC at the 
laboratories of the Institute of Sciences of Vine and Wine 
(ICVV, Rioja, Spain) until sample preparation. 

2.2. Vis-SW NIR hyperspectral imaging 

Prior to image acquisition, the clusters were allowed to 
thaw in a cold room (4ºC) and subsequently to ambient 
temperature (~20ºC). The clusters were dried prior to the 
acquisition with a kimwipe paper and were not further 
manipulated or destemmed. 

Hyperspectral images were acquired at winery premises 
using a push broom Resonon Pika L VNIR hyperspectral 
imaging camera (Resonon, Bozeman, MA, USA) 
connected to an industrial computer. The spectral 
resolution of the camera was 2.1 nm (300 bands from 400 
to 1000 nm), with 300 pixels of spatial resolution. External 
illumination has been provided with twelve 45W tungsten 
halogen lightbulbs. Prior to the hyperspectral 
measurement, a Spectralon® (Labsphere, Sutton, NH, 
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USA) white reference (a surface with a reflectance over 
95%) was presented to the camera simulating the same 
position and distance to the fruit. A dark reference 
measurement was also performed to obtain the inherent 
electronic noise. The spectral light intensity values 
collected by the camera were translated into reflectance 
(R) with Equation 1: 

R(λ) =
G(λ) − D(λ)
W(λ) − D(λ) 

(1) 

where λ is a wavelength (in nanometers), G is the intensity 
of the light reflected by the grapes (in nanometers), W is 
the intensity of the light coming from the white reference 
(in nanometers), and D is the dark current (in nanometers). 

To carry out the HSI acquisition, a holding structure 
was built and placed above the sorting table of the 
University of La Rioja (UR, Rioja, Spain) winery (Figure 
1). In this structure, the HSI camera with the external 
illumination system were installed perpendicularly to the 
sorting table at 1 m distance. 

 

Figure 1. Hyperspectral imaging setup with Resonon Pika L VNIR 
camera and tungsten lighting above the sorting table, and Spectralon® 
white reference. 

The hyperspectral images were acquired by placing the 
clusters on the sorting table, allowing at least 2 cm of 
separation between them to facilitate the later 
segmentation of the region of interest (ROI) corresponding 
to each one of the clusters. 

For each one of the hyperspectral images acquired, a 
10x10cm Spectralon® square was placed before the 
samples, to have an optimal reference for the exact 
environmental lighting in that moment. The number of 
grape clusters included in a single image ranged from five 
to eight, depending on the bunch size and the number of 
samples of a given date. The bunches were marked with a 
small tape in the peduncle alternating colors red, brown 
and white, to ensure the same order was preserved. This 
tape was removed from the spectra in later processing 
stages. For each group of bunches, two opposite sides were 

scanned in individual images, preserving the same order 
and conditions. 

The camera settings were configured at 60fps (16.33 
ms per frame from the theoretical 16.66 ms, accounting for 
the camera processing time) and 3 dB of gain at the sensor. 
These parameters were identical in each session, because 
the lighting conditions were controlled and the external 
influence was kept to a minimum by blocking direct light 
on both sides of the sorting table. The inevitable variations 
were compensated with the Spectralon®.  

A total of 18 hyperspectral cubes were acquired for 
each side, for a total of 36, not accounting for black or 
other spectra acquisition for calibration. These images 
contained a total of 97 individual clusters. 

2.3. Analysis of grape composition 

Once imaged, the clusters were destemmed and berries 
crushed manually. Thereafter, the samples were 
centrifuged (Sorvall Lynx 4000 Centrifuge, Thermo 
Scientific, Madrid, Spain).  

Total soluble solids (TSS) and pH were measured 
using conventional OIV methods [13]. TSS was 
determined with a temperature compensating Quick-Brix 
60 digital refractometer (Mettler Toledo, Columbus, OH, 
USA) adding a few drops of the centrifuged must, and 
expressed as °Brix. pH was measured with a PH 8 PRO 
benchtop pH meter (XS Instruments, Codogno, LO, Italy).  

Malic acid, tartaric acid, anthocyanins and YAN 
amounts were determined using an enzymatic 
multiparameter analyser BioSystems Y-200 (BioSystems, 
Barcelona, Spain). 

The chromatic characterization of the samples, 
including color intensity (CI), Total Polyphenol Index 
(TPI) —I280—and colorimetric parameters (L, a, and b*), 
was carried out using an Agilent Cary 60 UV-Vis 
spectrophotometer (Agilent Technologies, Santa Clara, 
CA, USA). 

2.4. Spectral data analysis 

The HSI data were processed using Python 3.12 
alongside widely adopted computer vision and machine 
learning libraries, including OpenCV [14], scikit-image 
and scikit-learn.  

To automate the extraction of spectral signatures for 
each sample in the images, a representative subset of 
images was decomposed into all the individual wavelength 
bands and then saved as greyscale images. This allowed 
the identification of the optimal spectral range for 
distinguishing between the pixels belonging to the sorting 
table and the pixels belonging to the berries conforming 
the clusters. The most effective wavelengths in our setup 
ranged from 860 to 920 nm, with the optimal band varying 
slightly across acquisition sessions. 

Otsu's thresholding method [15], combined with basic 
morphological operations to remove noise and small 
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regions, was employed to isolate the region of interest 
(ROI) corresponding to each individual sample cluster. 

 The resulting binary masks were then saved in 
combination with the RGB components (chosen at 640 
nm, 550 nm and 460 nm respectively) of the hyperspectral 
image, then manually reviewed and corrected when 
necessary. Histogram equalization was applied to each 
band individually to improve the contrast of the images to 
review. Average spectra were subsequently calculated 
based on the pixels within the ROIs. A side-by-side 
comparison illustrating the resulting rectangular ROIs 
after segmentation is provided in Figure 2. 

 

Figure 2. a) Contrast corrected RGB portion of a hyperspectral image 
and b) Rectangular regions covering each one of the ROIs. 

Regression models using partial least squares (PLS), 
machine learning and artificial intelligence (ML/AI) 
algorithms have been built from the HSI data for all grape 
components, using cross validation as the main criteria, 
and performance metrics (R2, RMSE) computed and 
compared. Due to the noisy nature of spectral data, a 
sizable amount of preprocessing becomes necessary in 
both classic and IA based methods [16]. Several 
preprocessing methods were evaluated in this study to 
enhance spectral data quality and modeling performance. 
These included the Savitzky–Golay filter [17] with a first-
degree derivative and a window size of 15 for TSS, 19 for 
pH and for 17 tartaric acid. This filtering technique 
effectively reduced the intensity component of noise. 
Additionally, Mean Centering, Standard Normal Variate 
(SNV), and Autoscaling were applied to normalize the 
data and minimize variability unrelated to the chemical 
composition of the samples. 

For the machine learning models, a hyperparameter 
optimization strategy based on a nature-inspired algorithm 
was employed in order to improve model performance 
while maintaining computational efficiency. Specifically, 
we used the Bat Algorithm (BA), which is inspired by the 
echolocation behavior of microbats, which use frequency 
tuning and loudness adaptation to efficiently explore their 
environment and converge toward optimal solutions [18]. 

The optimization procedure was configured to run for 
a maximum of 50 generations (epochs), with each 
generation comprising a population of 10 candidate 
solutions. An early stopping criterion based on 
performance stagnation was employed, terminating the 
search if no improvement was observed over 5 consecutive 
generations. This strategy effectively balances exploration 
and exploitation within the hyperparameter space. The 
algorithm was applied to tune only the most influential 
hyperparameters for each model, thereby minimizing the 
risk of overfitting and enhancing generalization 
capabilities. Model performance during optimization was 
assessed using 10-fold cross-validation, with the mean 
squared error (MSE) serving as the scoring metric. This 
approach ensures that the selected models exhibit 
consistent performance across different data subsets, not 
just the training data. 

Overall, this nature-inspired optimization strategy 
provided an effective way to approach near-optimal 
solutions with fewer evaluations than exhaustive grid 
search methods, enabling faster development with limited 
computational resources. 

3. Results and discussion 

3.1. Grape composition 

The parameters studied were well represented with an 
adequate variability; samples being taken from veraison to 
postharvest (Figure 2). Likewise, TSS varied between 10.8 
°Brix to 27.0 °Brix, while pH ranged from 3.16 to 4.58. 
Tartaric acid concentrations spanned from 0.84 to 
4.37 g/L, and malic acid from 1.73 to 8.58 g/L. 
Anthocyanin content showed a wide range, from 23 to 
265 mg/L. Yeast assimilable nitrogen (YAN) levels varied 
markedly, between 35 and 512 mg/L. Chromatic 
parameters also exhibited notable variability: total 
polyphenol index (TPI) ranged from 8.27 to 37.78 UA, and 
color intensity (CI) from 1.40 to 7.42 UA. In terms of 
CIELAB coordinates, L* values ranged from 74.73 to 
93.49, a* from 2.46 to 17.88, and b* from 1.04 to 13.29, 
capturing the evolution of grape skin color attributes over 
time. 

3.2. Regression models for grape composition 
prediction 

A baseline model was generated for each of the 
parameters using PLS technique, widely used in 
hyperspectral data processing due to the inherent reduction 
in dimensionality. While PLS regression remains a 
standard technique for handling collinear spectral data and 
performing dimensionality reduction [19], Random Forest 
Regressor (RF), Multilayer Perceptron Regressor (MLP), 
and other artificial intelligence driven approaches offer 
several notable advantages. These include an enhanced 
capability to model complex nonlinear relationships 
between spectral variables and grape compositional traits, 
increased robustness to noise and irrelevant variables due 
to intrinsic feature selection and ensemble averaging, and 
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the ability to process high-dimensional spectral datasets 
without requiring stringent prior dimensionality reduction 
[20, 21]. 

Table 1 shows the models that provided the best results 
for cross-validation (CV), R²CV > 0.4, for Total Soluble 
Solids (TSS), pH, tartaric and malic acid. R2 values 
between 0.30 and 0.50 are considered to provide good 
separation between high and low values. R2 values 
between 0.50 and 0.70 provide good separation between 
high, medium, and low values. R2 values between 0.70 and 
0.90 are considered a good adjustment, and, finally, R2 
values ≥0.90 provide an excellent adjustment [9]. 

When RF and MLP models failed to achieve adequate 
predictive performance, PLS regression was employed as 
an alternative modeling approach to improve prediction 
accuracy. Among these, the best results were obtained for 
pH, with a RF model achieving a cross-validation 
coefficient of determination (R² CV) of 0.90 and a 
RMSECV of 0.11, indicating an excellent, predictive 
accuracy. A less robust outcome was observed for total 
soluble solids (TSS), where a MLP model reached an R²CV 
of 0.64 and RMSECV of 2.40, indicating a good separation 
between high, medium, and low values. For malic acid, the 
PLS model performed slightly better, with an R²CV of 0.76 
and RMSECV of 0.59, which corresponds to a good level 
of model adjustment. In contrast, tartaric acid and the total 
polyphenol index (I280) yielded more modest predictive 
capacity, with R² values of 0.41 and 0.42, respectively, still 
offering meaningful discrimination between high and low 
concentration ranges, though not suitable for precise 
quantification. 
Table 1. Cross-validation of the best models obtained to predict the grape 
composition parameters from HSI. 

Parameters Model RMSECV R2 CV 

Total soluble solids (º Brix) MLP 2.40 0.64 

pH RF 0.11 0.90 

Tartaric acid 
(g/L tartaric acid) RF 0.63 0.41 

Malic acid   
(g/L malic acid) PLS 0.59 0.76 

Total Polyphenol Index (I280) PLS 4.24 0.42 

MLP: Multi Layer Perceptron. RF: Random Forest. PLS: Partial Least 
Squares. R2CV: determination coefficient of calibration. RMSECV: root 
mean square error of cross validation.  

Several other grape composition parameters exhibited 
limited predictive performance, with coefficient of 
determination (R²CV) values falling below 0.40. These 
include yeast assimilable nitrogen (YAN), with an R²CV of 
0.35 and an RMSECV of 75, and the color intensity (CI), 
for which the model achieved an R²CV of 0.30 and an 
RMSECV of 0.97. Similarly, total anthocyanin 
concentration (R²CV = 0.31; RMSECV = 44), as well as the 
CIELab color coordinates L* (R²CV = 0.30; RMSECV = 
3.03), a* (R²CV = 0.31; RMSECV = 3.13) and b* (R²CV = 
0.62; RMSECV = 1.38), showed lesser predictive 
capacity, despite the comparatively higher R²CV value of 
the b*. These results fall within the category of models that 

provide only a basic separation between high and low 
values (0.30 ≤ R²CV < 0.50). Notably, all models for these 
parameters were developed using PLS regression, as the 
implementation of machine learning algorithms did not 
result in improved predictive accuracy. 

Figure 3 displays the best prediction models for grape 
parameters showing adequate prediction capacity from 
hyperspectral imaging. The samples gathered in the 
regression plots for pH (Figure 3a), total soluble solids 
(Figure 3b) and malic acid (Figure 3c) show a really good 
fit along the correlation lines and mostly fitted between the 
95% confidence bands. A considerably large and evenly 
distributed range for the studied parameters was covered 
by the samples from the experiment.   

 

Figure 3. Regression plots for pH (a), Total Soluble Solids (b) and Malic 
acid (c) using the best models generated from grape clusters hyperspectral 
images in the VIS + SW-NIR range. Solid line represents the regression 
line and dotted line refers to the 1:1 line. Prediction confidence bands are 
shown at a 95% level (semitransparent area). Different dot colors 
correspond to different sampling dates (lower hue indicates earlier dates). 
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The tendency exhibited in Figure 3 is consistent with 
expected physiological trends during grape ripening, 
where malic acid degradation is accompanied by rising pH 
levels and an increase in total soluble solids due to sugar 
accumulation. 

The results of this work are consistent with, albeit 
slightly below, the state-of-the-art in hyperspectral 
imaging (HSI) applications for grape quality prediction 
under laboratory or field conditions [9, 11, 12].  

Better predictive performance for total soluble solids 
(TSS) has been consistently demonstrated in previous 
research, with R²CV values nearing 0.90 [9, 11, 12]. In 
contrast, the model developed in the present study yielded 
a lower R²CV of 0.64, which still permits effective 
stratification of grape samples into three categories (low, 
medium, and high °Brix). Such categorical discrimination 
remains highly valuable for practical applications at grape 
reception in the winery, facilitating informed decisions 
regarding batch classification and optimal vinification 
strategies. 

PLS regression models reported in [12] achieved 
higher R²CV values of 0.84 for malic acid and 0.56 for 
tartaric acid compared to those obtained in the present 
study (0.76 and 0.41, respectively). However, their 
informed RMSECV values were 0.90 g/L for malic acid and 
1.29 g/L for tartaric acid, while the present study achieved 
lower RMSECV values, 0.59 g/L and 0.63 g/L, 
respectively, indicating improved predictive accuracy in 
absolute error terms despite lower coefficient of 
determination values.  

Noteworthy, the predictive performance achieved for 
pH in this study (R²CV = 0.90; RMSECV = 0.11) stands out. 
This result not only falls within the category of models 
with an excellent fit but also surpasses previously reported 
values in the literature (R²CV = 0.73; RMSECV = 0.20) 
using PLS regression under field conditions with VIS-NIR 
hyperspectral imaging [12]. 

Concerning chromatic parameters, prior literature have 
reported superior predictive performance for anthocyanin 
concentration, with R²CV values of 0.83 using support 
vector machines (SVM) and 0.78 using PLS regression 
models based on on-the-go hyperspectral imaging in 
commercial vineyards [11,12]. Similarly, for the total 
polyphenol index, an R²CV value of 0.44 was reported by 
the same authors, which is comparable to the results 
obtained in the present study. 

However, several methodological and experimental 
differences must be considered when interpreting these 
outcomes. Contrary to prior studies that conducted 
hyperspectral imaging on freshly harvested or field-
collected grape clusters [7, 11, 12], the hyperspectral data 
in this study were acquired following the freezing and 
subsequent thawing of the grape samples. This protocol, 
implemented due to logistical and experimental 
constraints, may have compromised tissue integrity, 
thereby influencing the reflectance properties, particularly 
within wavelength regions sensitive to water content, 
pigment distribution, and surface structure. Such 

alterations in spectral responses could partially explain the 
diminished data quality, potentially limiting the accuracy 
of predictive models derived from these images. 

Another notable divergence from literature is the 
choice of modeling approach. While most previous studies 
employed PLS regression [7, 9, 12], the present research 
explores the potential of RF algorithms and MLP, non-
parametric machine learning methods with several 
advantages in the context of high-dimensional spectral 
data [22, 23]. Unlike PLS, which primarily captures linear 
relationships, RF and MLP are capable of modeling 
complex, non-linear interactions and can automatically 
identify and prioritize relevant spectral features, offering 
improved generalization when appropriately trained. 
Moreover, RF and MLP tend to be more robust to 
multicollinearity, outliers, and non-Gaussian data 
distributions, making it a valuable tool in scenarios where 
spectral variability is high or dataset quality is 
heterogeneous [24]. 

Despite the relatively modest performance observed 
for certain chemical parameters, the use of RF, MLP and 
similar artificial intelligence techniques represents a 
strategic advancement in the application of HSI to 
viticulture. As datasets grow in volume and diversity, and 
as more sophisticated preprocessing and model-tuning 
techniques are implemented, machine learning models are 
expected to surpass traditional linear approaches in both 
accuracy and adaptability—particularly for agricultural 
applications [24, 25]. 

4. Conclusions 

This preliminary study demonstrates the feasibility of 
applying HSI combined with AI techniques to assess grape 
composition with a non-destructive, rapid, and scalable 
approach. Among the regression models developed, pH 
prediction achieved the highest performance (R²CV = 0.90), 
considered to provide an excellent adjustment. Notably, 
the models developed for total soluble solids (TSS) and 
malic acid achieved sufficient predictive power (R²CV = 
0.64 and 0.76, respectively) to enable the reliable 
classification of grape samples into three categories—low, 
medium, and high values—thus offering valuable 
decision-making support at grape reception. For other 
compositional traits, including tartaric acid, yeast 
assimilable nitrogen, total polyphenol index, 
anthocyanins, color intensity and chromatic coordinates, 
the models yielded R²CV values between 0.30 and 0.50. 
While these results do not allow for precise quantitative 
predictions, they are nonetheless adequate to distinguish 
between high and low concentration levels, providing a 
useful basis for initial sorting and qualitative assessment. 

Despite the relatively modest performance observed 
for some chemical traits compared to other studies, the use 
of AI techniques like Random Forest (RF) and Multilayer 
Perceptron Regressor (MLP) represents a strategic 
advancement in viticultural applications of HSI. As 
datasets grow in volume and diversity, and as more 
sophisticated preprocessing and model-tuning techniques 
are implemented, machine learning models are expected to 
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outperform classical chemometric methods in both 
accuracy and adaptability—particularly for in-field, real-
time monitoring scenarios. 

It is worth highlighting that this study is framed within 
the HyperGrape project (PID2023-150555OB-I00, funded 
by MCIU/AEI/10.13039/501100011033 and by FEDER, 
EU), which aims to overcome current limitations in the 
assessment of grape composition and quality. Beyond the 
parameters analyzed in the present work, the project’s 
overarching objective is to develop robust, real-time, and 
non-invasive methodologies for monitoring the evolution 
of key phenolic (e.g. anthocyanins, flavonols, flavanols, 
hydroxycinnamic acids, and stilbenes) and volatile (e.g. 
terpenes, norisoprenoids, C₆ compounds, and benzenoids) 
compounds, in red and white grape cultivars, both in 
winery and vineyard settings. In forthcoming studies, a 
dual-camera system incorporating the Pika IR+ sensor will 
be implemented, extending spectral coverage (400–1700 
nm). This broader spectral window is expected to enhance 
the system’s ability to capture complex chemical 
signatures, thereby enhancing the accuracy and 
adaptability of predictive models. 

In conclusion, the integration of HSI sensors within the 
crush pad environment, in combination with advanced AI-
driven modelling, holds the potential to generate rapid, 
objective, and non-invasive predictions of grape quality 
and composition. This, in turn, may enhance winemaking 
practices by improving both perceived quality and 
compliance with quality assurance standards. In the longer 
term, the implementation of such technologies could 
support the development of more transparent and data-
driven grape purchasing frameworks, reflecting the true 
compositional value of the fruit and informed by the input 
of key stakeholders across the wine value chain. 
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