

DOI: https://doi.org/10.58233/D4dhhbri

Evolución de la astringencia durante la maduración de uvas tintas a través del índice de astringencia tribológico

Evolution of astringency during the ripening of red grapes through the tribological astringency index

Edmundo Bordeu¹, Natalia Brossard¹, Vladimir Olivares¹ y Matías Chavez¹ Winetech, Chile

Abstract. La composición fenólica de las uvas tintas es uno de los parámetros de calidad más importantes. La evolución del color y la astringencia potencial son dos de los aspectos más importantes que deberían seguirse durante la maduración para una correcta decisión de la fecha de cosecha en vinos tintos. Si bien la evolución del color potencial es posible a través de las metodologías propuestas originalmente por Glories, no existía hasta el momento un método que permitiera seguir la evolución de la astringencia. Recientemente se han desarrollado técnicas para medir la astringencia emulando el roce entre le lengua y el paladar utilizando tribología oral, las que han logrado buenas correlaciones con paneles sensoriales. Utilizando estas tecnologías Winetech ha desarrollado un método que permite seguir la evolución de la astringencia potencial de uvas tintas. A través de la extracción de compuestos fenólicos desde muestras de uva y la aplicación de tribología oral a la mezcla de este extracto con una solución de proteínas es posible determinar un índice de astringencia potencial. Este valor aporta un dato cuantitativo que permite decidir de mejor forma la fecha de cosecha en comparación con la degustación de bayas, subjetiva y particularmente difícil por la presencia de azúcar y la imposibilidad de evaluar una muestra realmente representativa. Disponer de un valor de astringencia potencial de la uva permite además ajustar los procedimientos de vinificación en función del cepaje y el mercado de destino.

Abstract. The phenolic composition of red grapes is one of the most important quality parameters. The evolution of color and potential astringency are two of the most important aspects that should be followed during ripening of red grapes for a correct harvest date decision. Although the evolution of potential color is possible through the methodologies originally proposed by Glories, there was no method to follow the evolution of astringency until now. Recently, techniques have been developed to measure astringency by emulating the friction between the tongue and the palate using oral tribology, which have achieved good correlations with sensory panels. Using these technologies, Winetech has developed a method that allows to follow the evolution of the potential astringency of red grapes. Through the extraction of phenolic compounds from grape samples and the application of oral tribology to the mixture of this extract with a protein solution, it is possible to determine a potential astringency index. This value provides quantitative data that allows us to better decide on the harvest date compared to the tasting of berries, which is subjective and particularly difficult due to the presence of sugar and the impossibility of evaluating a truly representative sample. Having a potential astringency value of the grape also allows winemaking procedures to be adjusted according to the grape variety and the destination market.

1. Introducción

La importancia de realizar adecuados seguimientos de la madurez es uno de los factores fundamentales que determinan la calidad del vino obtenido. Aunque muchos productores se conforman con seguir solamente los azúcares y la acidez, en vinos tintos cada día hay más conciencia de la necesidad de seguir la evolución de los principals parámetros que van a determiner el color y las sensaciones en boca que constituyen elementos centrales de la calidad. Tradicinalmente estos aspectos se tratan de seguir a través de la degustación de bayas. Sin embargo esta técnica adolece de un alto grado de subjetividad, por definición implica un muestreo muy limitado y está claramente limitada por la fatiga sensorial que acompaña a las evaluaciones de astringencia. La principal alternativa propuesta es el seguimiento de la madurez fenólica, popularizada originalmente por Glories en Bordeaux. (Nadal, 2010) La metodología, y varias modificaciones posteriores, se basa en obtener un extracto a partir de una muestra de uvas previamente molidas, por maceración con una o dos soluciones buffer. En este extracto se realizan determinaciones de fenoles e intensidad colorante para predecir el contenido de taninos y el color potencial del vino. Estas metodologías en general tienen buenos resultados en la predicción del color potencial del vino. Sin embargo, la estimación de la astringencia potencial a través del contenido de taninos en general ha tenido resultados bastante más pobres, tanto por las dificultades de la determinación de taninos cómo por la baja correlación de este parámetro con astringencia sensorial.

En el último tiempo, la tribología se ha propuesto para la medición de ciertos parámetros sensoriales (Brossard et al, 2016; Laguna et al, 2017). Esta técnica, permite medir la fricción entre dos superficies en movimiento y evaluar el efecto de distintos líquidos que lubrican las superficies. En el caso de la astringencia se ha propuesto imitar el roce entre la lengua y el paladar usando cómo lubricante soluciones proteicas similares a la saliva, mezcladas con un alimento astringente. Estudios realizados con vino tinto han mostrado buenas correlaciones entre la tribología oral y astringencia sensorial, muy superiores a las obtenidas utilizando la concentración de taninos o de polifenoles totales. La técnica incluso presenta la ventaja de poder diferenciar distintas subcualidades cómo la astringencia secante y diferenciar cepajes con contenidos similares de tanino pero con astringencias sensoriales muy distintas cómo el Carmenere, aterciopelado y el Cabernet-Sauvignon mucho más duro.

El empleo de la tribología oral para caracterizar la astringencia de vinos tintos terminados ha sido exitosa (Brossard et al, 2020); sin embargo, su aplicación al seguimiento de la astringencia de la uva durante la maduración aún no ha sido probada.

En función de lo anterior, Winetech, empresa con experiencia en la medición de astringencia en vinos tintos por tribología decidió realizar el presente estudio para llegar a una metodología práctica para realizar seguimientos de astringencia en la maduración de uvas tintas. Los objetivos del estudio incluyeron el sistema de muestreo, la obtención de los extractos y las condiciones

para realizar las determinaciones tribológicas en esta nueva matriz, con concentraciones altas y variables de azúcares.

2. Metodología

Se realizaron muestreo semanales de madurez en distintas viñas de la zona central y sur de Chile, considerando distintos cepajes cómo Cabernet-Sauvignon, Merlot, Carménere y País. En general se utilizó el Sistema de muestreo de 12 racimos completos al azar utilizado por varias viñas importantes. Todos los muestreos fueron realizados por el mismo operador Desde esas muestras se realizó en laboratorio un muestreo al azar de 2 submuestras de 200 bayas cada una las que fueron pesadas, y luego se les determinó la composición básica y el contenido de taninos, polifenoles totales y la intensidad colorante, luego de obtener un extracto por una modificación del procedimiento originalmente propuesto por Glories. Sobre el mismo extracto, se determinó la astringencia potencial por tribología.

Para la obtención del extracto se utilizó una molienda mediante una juguera similar a la de Glories y luego se ensayaron soluciones buffer de distinta composición y en distinta proporción y. con distintos tiempos de maceración. En definitiva se optó por una solución hidroalcohólica con 13° de alcohol, acidificada con ácido tartárico y ajustada a pH 3,2. La maceración se realizó en una proporción 1:1 de uva molida y buffer la que se prolongó por alrededor de 16 horas a temperatura ambiente y luego se separó el extracto por centrifugación y filtración por fibra de vidrio.

La determinación de taninos se hizo por precipitación con metil celulosa de acuerdo al protocolo del AWRI y la determinación del índice da astringencia tribológica se realizó en un tribómetro MTM2 de PCS Instruments utilizando la solución proteica desarrollada por Winetech y empleando el protocolo de operación desarrollado por Wineteh para vino terminado, en proceso de partentamiento. Los análisis de fenoles y las determinaciones tribológicas se realizaron por separado sobre los dos extractos obtenidos de cada lote de 200 bayas y realizando 3 replicas analíticas

3. Resultados y Discusión

Dado que los extractos provenientes de uvas en maduración contenían cantidades importantes y variables de azúcar, previo a realizar los seguimientos de madurez y astringencia en los extractos, se realizó un ensayo para determiner el posible impacto de altas concentracions de azúcar sobre la astringencia tribológica. Con este fin, se le agregaron distintas concentraciones de azucar a un mismo vino tinto, en un rango de concentraciones como era posible esperar en seguimientos de maduración cerca del momento de cosecha.

La tabla 1 muestra que no se obtuvieron diferenias significativas en las astringencias tribólogicas del mismo vino sin adición de azucar y con adiciones en el rango de 204 a 230 g/L de azúcar. Por lo tanto, la concentración de

azúcar de los extractos no afectaría los resultados de astringencia tribológica obtenidos.

Tabla 1. Astringencia por tribología de un vino Cabernet Sauvigon 2021 con distintas cantidades de azúcar añadida.

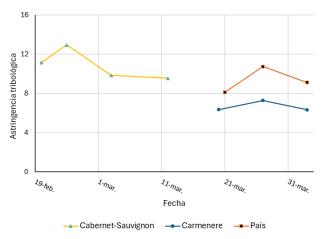
Azúcar g/L	Indice astringencia				
0	15,1 ± 1,7 a				
204	14,9 ± 1,7 a				
213	15,5 ± 1,0 a				
221	15,5 ± 0,9 a				
230	15,3 ± 1,0 a				

*Promedios en una columna con la misma letra no son diferentes según la prueba HSD Tukey (P < 0,05).

Un Segundo experimento, realizado con uva congelada, previo a los seguimientos de madurez realizados durante la vendimia 2025, permitió determinar que extractos obtenidos con uvas Cabernet-Sauvignon, Carmenere y Petit Verdot podían ser diferenciados en forma significativa en términos de sus contenidos de polifenoles totales y taninos y también por su astringencia tribológica. (datos no presentados) En base a estos resultados se decidió el protocolo a aplicar para la obtención de los extractos durante los seguimientos de madurez de la vendimia 2025.

Los muestreos de madurez realizados en distintas zonas y en distintos cepajes mostraron las típicas evoluciones del contenido de azúcares, la acidez de titulación y el pH y el de taninos, fenoles totales y el color en los extractos de uvas. A modo de ejemplo, la tabla 2 muestra estas evoluciones en un Cabernet-Sauvignon del valle del Maipo, desde el 20 de febrero hasta el 19 de marzo.

Tabla 2. Evolución de los principals parámetros de la composición de la uva durante la maduración de un Cabernet-Sauvignon del valle del Maipo.


	Fecha	Peso baya g	°Brix	Tanino g/L	D.O.280	Int. Colorante
,	20/2/25	1,10	19,8	1,19	1,33	6,12
	24/2/25	0,96	22,3	1,28	1,50	8,61
	3/3/25	1,06	22,9	1,26	1,54	7,90
	12/3/25	0,88	22,9	1,25	1,51	8,28
	19/3/25	1,09	24,3	1,16	1,46	8,71

Evoluciones similares se obtuvieron en otras regiones y cepajes pero con una mayor anticipación o retardo. El cepaje País, proveniente del sur de Chile (Bío-Bío) mostró el mayor retardo (Tabla3) y como era de esperarse, bayas más grandes y con mucho menor color.

Tabla 3. Evolución de los principals parámetros de la composición de la uva durante la maduración de un País del valle de Bío-Bío, sur de Chile

Fecha	Peso baya g	°Brix	Tanino g/L	D.O.280	Int. Colorante
21/3/25	1,96	20,25	0,91	0,95	2,39
27/3/25	1,95	21,45	0,93	0,95	2,46
3/4/25	2,25	21,10	0,82	0,84	1,75

Los resultados obtenidos con la astringencia tribológica muestran que el protocolo implementado es capaz de detectar diferencias en la astringencia de los extractos de uvas. La figura 1 presenta las evoluciones obtenidas con uvas de un Cabernet-Sauvignon, un País y un Carmenere. Se puede distinguir una astringencia más alta en el Cabernet, una similar en el País, un cepaje en general de menor cuerpo pero con una astringencia agresiva y una astringencia claramente más baja el en Carmenere, como es característico de este cepaje.

Figura 1. Evolución de la astringencia tribológica durante la maduración de un Cabernet-Sauvignon, un País y un Carmenere.

Es interesante destacar que no se observó un paralelismo entre las evoluciones de compuestos fenólicos totales o los taninos con la astringencia tribológica. Esto coincide con resultados obtenidos en vino terminado y confirma la dificultad de emplear determinaciones analíticas de fenoles como herramientas para estimar astringencia.

Es posible concluir que la evaluación de la astringencia en uvas a través de la medición de la fricción por tribología es una buena alternativa para realizar seguimientos de maduración, en reemplazo de la degustación de bayas.

Mejoras en las técnicas de muestreo y de obtención de los extractos deberían permitir disminuir la variabilidad de los resultados y hacer la técnica aun más discriminante

4. References

- M. Nadal, En S.Delrot, H. Medrano, E. Or, L. Bavaresco, M. Grando, (Eds.), Methodologies and results in grapevine Research. (pp. 389-410). Springer Dordrecht (2010)
- N. Brossard, H. Cai, F. Osorio, E. Bordeu, J. Chen, 2016. Journal of Texture Studies, 47, 392-402 (2016)
- L. Laguna, A. Sarkar, M. Bryant, A. Beadling, B. Bartolomé, M. Moreno-Arribas. Food Research Int. 102, 478-486 (2017).
- 4. N. Brossard, E. Bordeu, R. Ibáñez, J. Chen, F. Osorio. J Texture Stud. **51**:585-592. (2020)