IMPACT OF MODERATE WATER DEFICIT ON GRAPE QUALITY POTENTIAL ON PINOT NOIR IN CHAMPAGNE (FRANCE)

Authors:Laure de RESSEGUIER^{1*}, Elisa MARGUERIT¹, Jean-Philippe ROBY¹, Bérangère FIERFORT-CAQUÉ², Gaël VUILLE², Denis BUNNER², Cornelis VAN LEEUWEN¹

¹EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882 Villenave d'Ornon, France ²Champagne Bollinger, 20 Boulevard Maréchal de Lattre de Tassigny, 51160 Aÿ-Champagne, France

*Corresponding author:laure.deresseguier@agro-bordeaux.fr

Abstract:

Context and purpose of the study - Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Material and methods - High quality Champagne potential was related to particular grape composition. On 25 hectares planted with Pinot noir, grape samples were taken following a very high density grid (10 samples / ha). One sample is composed of 200 berries taken on 10 vines. On these samples, vine water status was assessed by measuring $\delta^{13}C$ in grape juice and vine nitrogen status by measuring NH₄⁺ in must. Berry weight, grape sugar, total acidity, malate and pH were also measured. Berry weight was recorded at each sampling location while yield was measured at a lower spatial resolution (the parcel level). These measures have been carried out on two vintages (2017 and 2018) and on 4 locations known to produce different quality levels of Champagne.

Results - Quality level of Champagne was positively related to technological maturity of Pinot noir. Following, malate and sugar/total acidity ratio (S/TA) were considered as a proxy for grape quality potential. A vintage effect was highlighted, the higher level of water deficit in 2018 increased the level of maturity compared to 2017. There is also a location effect, Tauxières Nord and Sud have a lower level of maturity even if Tauxières Sud is more constraint in 2018 than the other locations.

Water deficit plays an important role on maturity of Pinot noir in our study with a strong significant relation with malate and a significant link more or less important depending on vintage with pH, S/TA ratio and berry weight.

The effect of vine nitrogen status on maturity is more complex with no clear correlations during the vintages studied

Berry weight is positively correlated to water deficit (δ^{13} C) in a dry vintage (2018) and to vine nitrogen status (must NH₄⁺) in a vintage characterized by lower water deficit (2017). A yield effect has been identified particular on S/TA ratio.

When Pinot noir vines face water deficits in Champagne, maturity is improved. It should be noted that due to capillary water movements in the limestone soils, water deficits are rarely severe. In our study water deficits ranged from non-existent to moderate. Water deficit improved grape quality potential for sparkling wines produced from Pinot noir in this study. More investigations are needed to confirm these results in other vintages and on a wider range of soil types.

Keywords: Grapevine, sparkling wine, Champagne, quality potential, water deficit, grape composition

1. Introduction.

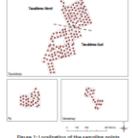
Impact of moderate water deficit on grape quality potential on Pinot noir in Champagne (France)

LAURE DE RESSEGUIER1*, ELISA MARGUERIT1, JEAN-PHILIPPE ROBY1, BÉRANGÈRE FIERFORT-CAQUÉ2, GAËL VUILLE2, DENIS BUNNER2, CORNELIS VAN LEEUWEN1

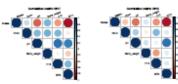
¹EGFV, Bordeaux Sciences Agro, INNA, Univ. Bordeaux, ISVV, 33882 Villenave d'Ornon, France hampagne Bollinger, 20 Boulevard Maréchal de Lattre de Tassigny, 51260 A9-Champagne, Fran

INTRODUCTION

The involuce from Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen statu. Uttle investigation has been carried out concerning their potential influence on sparkling wine quality.


In this study vine water and nitrogen status were assessed at a very high density and then related to yield components and grape composition. Major factors driving grape quality potential on Phot not in Champagne were highlighted.

MATERIAL AND METHODS


25 hectares of Pinot noir grafted on 418 (Figure 1) 4 different locations (Tauxières Sud, Tauxières Nord, Ağ, Verzenay) 249 samples (10 / ha) on 72 parcels colle

One sample: 200 berries from 10 vines

- Analyses :
 On each sampling point (2017 and 2018):
- Grape composition at the same date: berry weight, reducing sugars, total acidity,
 Vine water status (5thC) and Vine nitrogen status (must NH₄*)
- Per parcel

RESULTS AND DISCUSSION

Correlation matrix on 2017 and 2018 (Figure 2)

- Malate is negatively correlated to $\delta^{13}C$ and positively correlated to berry weight. Malate is also correlated to must NH4+ but
- positively in 2017 and negatively to 2018. Sugar/Total Acidity ratio (S/TA) is positively correlated to δ^{IA}C.
- Berry weight is positively correlated with must NH_4^+ in 2017 and negatively with δ^{13} C in 2018.

Figure 3: (A) PCA of combined results of 2017 and 2018 per location / (B) Idem per vin

PCA 2017-18 (Figure 3)

- Dimension 1 explains the maturity. Globaly for the 2 years studied, S/TA and pH are positively linked with water deficit but Malate and berry weight have a negative correlation with water deficit
- There is a location effect: Tauxières Sud and Nord have later maturity than Aÿ and Verzenay blocks
- Vintage effect is more important than the block effect.

Location effects (Figure 4)

- · Vintage effect: compared to 2017, in 2018 grapes show more water deficit and lower concentration of must NH₄" certainly due to climatic conditions during the spring period. The 2018 vintage is also characterised by a lower malate concentration and a higher S/TA ratio (i.e. better
- δ^{III}C results show a location effect: Tauxières Nord induced less water deficit. Tauxières Sud shows a strong vintage effect. This is maybe due to younger vines without fully established root system or the soil characteristics which are different between these blocks.
- There is no location effect in 2018 for must NH,*, but in 2017 Verzenay had the lowest must NH,*
 concentration and the range among the locations is smaller in 2018.
- Even if there are fluctuations among blocks for water and nitrogen status, Aÿ and Verzenay have

To take the yield into account it necessary to move to plot scale

- Statistic results of linear model (Table 1) show that yields have a significant effect on S/TA and less effect on malate concentration
- δ^{Li}C level impacts on malate whathever the vintage considered and on S/TA in 2017.
- There is a positive link between must NH₄* and maturity in 2017: Maturity decreases with the increase of nitrogen status. In 2018, the effect is opposite.

5/13.17 S/13.118 Malate 17 Malate 18 Malate > 5"C> Malate > 5"C> S/TA 75 5°C 's NS. suct NH₄ 2 S/TA S/NH₄ 2 S/TA 2 NH₄ 2 Molete 2 NH₄ 2 Yield S/TA 's Yield? S/TA 's Yield?

Figure 4: Boxplots of meturity parameters and vine water and nitrogen status

CONCLUSION

- A vintage effect was highlighted: 2018 shows more water deficit compared to 2017, lower level of nitrogen and higher level of maturity.
 There is also a location effect, Tauxières Nord and Sud have a lower level of maturity even if Tauxières Sud is more constraint in 2018 than other locations
- Berry weight is positively correlated to water deficit (5 ¹⁸C) in a dry vintage (2018) and to vine nitrogen status (must NH₄*) in a low water deficit vintage (2017).

 Water deficit plays an important role on maturity of Pinot noir in Champagne with a strong link for Malate and a link more or less important depending on vintage for pH,
- S/TA ratio and berry weight.

 The link between maturity and vine nitrogen status is more complex because the correlation can be positive or negative depending on the vintage
- Yields have a significant impact on S/TA ratio but also on malate in 2018 vintage.
 More investigations are needed to confirm these results in other vintages with a higher range of water deficits and on a wider range of soil types.