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Context & Purpose:
The past three decades of terrestrial remote sensing research have delivered unprecedented insights into
our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of
our fundamental knowledge in this domain has come from studies in non-agricultural systems and until
recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and
large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering
innovations and advancements in constellation architecture design have refined the accuracy and
scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops,
including grapevine, planted in smaller, spatially varied fields. Most prior work on grapevine remote
sensing has aimed to detect water stress, with few studies addressing other abiotic parameters such as
nitrogen content, yield, and fruit composition. Reports on proximal and remote sensing of grape disease
have been focused on visible disease detection and predominantly limited to near surface deployments
(Naidu et al. 2009; Oerke et al. 2016; Hou et al. 2016; MacDonald et al. 2016; Knauer et al. 2017;
Bierman et al. 2019; Bendel et al. 2020; Gao et al. 2020; Lacotte et al. 2022; Sawyer et al. 2023). Plant
disease alters how solar radiation interacts with leaves, canopy, and plant energy balance resulting in
changes that are readily capturable in visible to shortwave infrared (VSWIR, 400-2400nm) hyperspectral
imagery prior to symptom appearance (Gold et al. 2020). Exciting recent work has established that
airborne imaging spectroscopy is capable of pre-symptomatic disease detection in multiple culturally
important pathosystems, including olive quick decline syndrome (Zarco-Tejada et al. 2018, 2021) and
infections of oak by Phytophthora spp. (Hornero et al. 2021) and Bretziella fagacearum (Sapes et al.
2022). This novel capacity combined with the anticipated spectral, spatial, and temporal coverage of
forthcoming hyperspectral satellite systems, such as NASA’s Surface Biology and Geology (SBG,
Schneider et al. 2019) and ESA’s Copernicus Hyperspectral Imaging Mission for the Environment
(CHIME, Nieke and Rast 2018), will revolutionize imaging spectroscopy data availability for agricultural
decision making, enabling disease monitoring at hereto unachievable resolutions while providing a robust
foundation for multiscale risk estimation and surveillance networks.

While these studies in aggregate have proved imaging spectroscopy to be powerful tool for understanding,
detecting, and mapping plant-fungal, oomycete, and bacterial interactions at scale, viral-plant interactions
have yet to be explored at suborbital and beyond scales. Viral diseases, including that caused by
Grapevine Leafroll Virus Complex 3 (GLRaV-3), cause $3 billion in losses to the US wine and grape
industry annually (Naidu et al. 2014). GLRaV-3 infection significantly reduces vine longevity and causes
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the grapevine to misappropriate resources, resulting in uneven cluster ripening, changes to grape berry
chemistry, reduced wine quality, and visible foliar reddening post-verasion in red grape varieties. Further
challenging management is GLRaV-3’s long (~12-month) latent phase, during which the host is
infectious, but foliar symptoms are not yet apparent (Naidu et al. 2014; Blaisdell et al. 2016). Existing
strategies to detect GLRaV-3 in the field are predominantly based on visual scouting by trained experts, a
labor and time intensive process. This means that both latently infected red grape varieties and white
grape varieties (which do not manifest visible foliar symptoms) serve as inoculum sources for nearby
vineyards without grower recourse other than expensive ($40-50 per vine) molecular testing. Previous
work has demonstrated the utility of remote sensing data for large-scale detection of symptomatic
GLRaV-3 in red grape varieties (Hou et al. 2016; MacDonald et al. 2016) however these proof of concept
studies have not yet transitioned from research to application, nor have they explored asymptomatic
detection. Effective asymptomatic detection is critical for management, especially when the practicalities
of deploying scouts across the hundreds of thousands of acres of grapevine grown in the United States is
considered. Even under the most aggressive scouting plans, it takes at minimum 12 months, and more
frequently, 18-24+ months, from date of first infection to date of removal.

Vineyards are difficult to monitor via remote sensing because of limited equipment viewing angle that
challenges side and lower canopy symptom detection. The grapevine canopy is small relative to the image
footprint of most air- or spaceborne sensors, and vines are bordered by inter rows of bare soil and/or
non-vine vegetation, and shadows cast by the crop itself impart noise to the reflectance signal. Effective
remote sensing requires large amounts of calibration and validation data, which can be challenging to
obtain through traditional human field scouting. This has led to widespread interest in automated
ground-based detection methods for early detection, and various techniques for data processing ranging
from traditional statistical methods to deep learning models developed (Naidu et al. 2009; Bendel et al.
2020; Gao et al. 2020; Sawyer et al. 2023). Thus far, use of these methods has been limited to situations
where leaves or branches are sampled and placed against a controlled background. The logical next step
to bridge the research to application gap is deployment on uncrewed ground vehicles (UGV) capable of
traversing in between rows without human intervention to collect validation data for aerial imagery at
scale. However, vineyards in different geological locations have varying environmental challenges and
management requirements. Designing robotic systems suitable for different environments, terrains,
slopes, and tasks is critical for simplified, effective deployment and cost control.

Effective use of the afore described technologies is facilitated by machine and deep learning, which help
to make sense of the underlying relationships within and amongst hundreds of highly correlated spectral
bands. These approaches have been widely used in airborne plant-microbe interaction sensing as well as
in the broader, adjacent domains of foliar functional ecology (Townsend et al. 2003; Sousa et al. 2021;
Wang et al. 2020). Together these can support agricultural decision-making at unprecedented scales, but
training and deploying these models is limited by the considerable compute and storage resources they
require, severely limiting non-expert use. Cloud computing offers on-demand and nearly unlimited access
to storage and computing resources—where connectivity allows. In agricultural areas with restricted
internet connectivity, edge computing complements cloud computing by placing storage and computing
nearer to data sources, enabling accurate models to be built and timely response. This distributed
computing model enables models to be trained in the cloud and deployed at the edge (e.g. on users’
devices), optimizing utility for agricultural decision-making (Rubambiza et al. 2022). These methods have
been increasingly applied in agricultural remote sensing, including yield prediction, soil mapping, and
land management (Rubambiza et. al 2023). Thus, edge and cloud computing are crucial for scaling
current techniques and investigating the implications of future spaceborne missions for effective disease
surveillance.

NASA’s Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) is an airborne
instrument operated from the Jet Propulsion Laboratory in Pasadena, CA with extensive historic
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acquisitions in California, including over ~364,000 hectares (ha) of vineyards. The AVIRIS mission
family, which includes Classic (C), Next Generation (NG), and the forthcoming AVIRIS-3, will continue
to collect wide-swath, high spectral resolution (<10 nm), and highly uniform spectroscopic imagery (400
to 2400 nm) over diverse California biomes, including viticultural production areas. Additionally, NASA’s
forthcoming hyperspectral satellite Surface Biology and Geology will be based on the AVIRIS family
architecture. AVIRIS-NG therefore represent perfect opportunity to generalize, optimize, and
continuously validate models for early GLRaV-3 detection in vineyards. Thus, the goals of the work
presented here are threefold:

1) Determine to what level of accuracy airborne imaging spectroscopy can detect asymptomatic
GLRaV-3 infection across scales.

2) Deploy these models in a distributed, cloud computing system designed with stakeholder values
and needs in mind.

3) Deploy an autonomous ground robotic training system to collect ground truth validation at scale
in real time to improve model development.

Materials and Methods:

Airborne Imagery Acquisition. Two airborne campaigns were conducted over the course of this research.
In September 2020, spectroscopic imagery over vineyards in Lodi was acquired with NASA-JPL’s
AVIRIS-NG instrument on board a King Air B-200 aircraft from an altitude of ~1,000 m above ground
level. The AVIRIS-NG platform samples the electromagnetic spectrum at 5 nm intervals within the 380
nm to 2510 nm spectral range resulting in 425 spectral channels. In total, this campaign, the “AVIRIS
Wine Tour,” collected imagery over 15,095 ha of California vineyards spanning Napa Valley, Sonoma
Valley, Lodi, and Paso Robles, at peak grapevine foliage. In May 2022 and September 2022, the SBG
High Frequency Time Series (SHIFT) campaign collected terrestrial and coastal marine AVIRIS-NG
flight lines in the Southern California bight between Santa Barbara and the Channel Islands, as well as
overlapping terrestrial flight lines in a 21 km x 68 km (1428 km2) rectangle stretching from Point
Conception to Figueroa Mountain in the southern Coast Ranges. All AVIRIS-NG imaging used in this
study are reflectance data and are publicly available and can be downloaded from the AVIRIS-NG data
portal https://aviris.jpl.nasa.gov/dataportal/. All imagery was pre-processed according to domain best
practices prior to analysis. For more details, please see Romero Galvan et al. (2023).

Ground Validation. During the AVIRIS-NG Wine Tour campaign, industry collaborators coordinated a
team of trained field technicians to visually inspect (“scout”) 109 ha of red grape varieties visible, foliar
symptoms of GLRaV-3 according to industry best practices (Bolton, 2020). Scouting and geotagging of
visibly diseased vines was conducted in September of 2020 and 2021 pre-harvest when symptoms were
most apparent. In total, 1427 and 2398 GLRaV-3-infected vines were identified by the ground-scouting
teams in 2020 and 2021 respectively. All grape clusters, green foliage, and canes were removed from the
grapevines during mechanical harvest approximately one week after final airborne data acquisition in
2020. Cane tissue samples from 100 vines in 2020 and 10 vines in 2021, variably identified as
diseased/non-diseased, were sent for commercial diagnostic testing to validate scouting accuracy. All
samples sent for testing that had been identified as GLRaV-3-infected by the scouts returned positive for
infection. No samples identified as non-infected by the scouts tested positive. Grapevine Red Blotch Virus
was not detected in any samples tested. After mechanical harvest in 2020 and prior to 2021 bud break,
industry collaborators removed diseased vines from the vineyards to prevent them from serving as an
inoculum reservoir. Vines were given one of three labels: non-infected (NI), symptomatic (Sy), and
asymptomatic (aSy). Vines that were not identified as visibly diseased by scouting teams in 2020 or 2021
were labeled as non-infected (NI). Vines identified as visibly diseased in 2020 (data acquisition year)
were labeled as symptomatic (Sy). Vines identified as visibly diseased in 2021 were labeled asymptomatic
(aSy). These vines were NOT visibly diseased in 2020, implying they were latently infected during the
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2020 AVIRIS-NG flights. This assumption is well supported by the current understanding of GLRaV-3
disease biology (Naidu et al., 2014; Blaisdell et al., 2016) and the fact that all green foliage was removed
from the vineyard during mechanical harvest shortly after data acquisition. Molecular testing to
conclusively diagnose whether vines labeled aSy were truly asymptomatic during the 2020 flights was not
possible given the study's scope and the expense of sample testing. Sy and aSy vines were geotagged with
an RTK-GPS.

During the fall flights of the AVIRIS-NG SHIFT campaign (September 8-15, 2022) a scouting team of
grape pathology researchers collected GLRaV-3 incidence data at a collaborating vineyard in Los Olivos,
CA. A sub-sample of the scouted vines had canes selected using random stratified selection to send for
commercial testing to verify identified symptoms were indeed due to GLRaV-3. Stratification was both
spatial and according to grapevine variety and found the team to be ~90% accurate in identifying
GLRaV-3 infected grapevines. Grapevine Red Blotch Virus was not detected in any samples tested.
During human scouting, each infected vine of the field was identified by visually inspecting its canopy,
and the location of its trunk was recorded by a handhold RTK-GPS device.

Ground Robot Data Acquisition: The study's data was gathered from a vineyard situated in central
California using the PhytoPatholoBot (Liu et al. 2022) in mid-September 2022 in coordination with the
AVIRIS-NG SHIFT Campaign. The data consisted mostly of timestamped RGB images of canopy side
views captured by a custom-designed camera with enhanced strobe lighting. The images were
4,096x3,000 pixels with a field of view of around 50x60 degrees. The camera was programed to collect
images at 1 second per frame interval, and 12 strobe lights adjacent to the camera were synchronized with
the camera shutter to provide uniform lighting conditions. The camera system was placed about 0.7m
away from the canopy and mounted on to a Husky four-wheel differential drive robot base (Clearpath
Robotics Inc.). The robot moved autonomously through the crop rows by following a pre-defined
sequence of GPS control points at a speed of approximately 0.5 m/s. To navigate through the vineyard, a
custom-designed PID line tracking program guided the robot, using localization and attitude data obtained
from the SMART-7 navigation system (Novatel Inc.). The SMART-7 system provided RTK calibrated
GPS information and INS attitude information at a frequency of 10Hz. The RTK signal was transmitted
through a 900MHz radio from a mobile RTK base station situated at the edge of the field. During data
collection, localization and attitude data was also timestamped and recorded along with the RGB images.
After the data collection, 100 images were randomly selected from one end of the field and segregated
into 4 tiles of 2,048x1,500 pixels for manual annotation of visible symptoms in the form of masks. Due to
the time constraints only 77 tiles were completed in time. The annotated tiles were further divided into a
training subset of 41 tiles, a validation subset of 10 tiles and a testing subset of 26 tiles randomly. Apart
from the annotated dataset, 14 consecutive rows located in the middle of the field were selected separately
to compare with the human scouting result in scale. The reserved dataset contained 10,588 images with
their time stamp and geo-referencing information and was not annotated. We then used our previously
developed near-real time semantic segmentation model for image disease detection (Liu et al., 2022).
Unlike conventional classification and bounding box detection models used for fast image-level disease
identification, this model provides pixel-level detailed masks to identify symptoms in images. This model
was modified with multi-level feature cross-links and transposed convolution-based resolution restoration
to improve segmentation accuracy while maintaining efficiency suitable for embedded robotic
deployment. For more detail, please see Liu et al. (2023).

Cloud Computing. The cloud computing system architecture consists of three major components that
provide an adaptable pipeline for disease detection: (1) NASA Cloud (2) the edge lab at Cornell
university, and (3) the Microsoft Azure Cloud. AVIRIS-NG data was downloaded from the NASA cloud
and pre-processed (e.g. BRDF correction, etc.) at the edge lab, and then aligned with stakeholder ground
truth validation. The training data can be uploaded to the cloud or remain entirely on the edge device.
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This system was intentionally designed not to retain training data uploaded into the cloud, only the model.
The below steps were followed to deploy the models developed in Romero et. al 2023 in the Azure cloud.

1) Serialization: The models developed in Romero Galvan et. al 2023 were serialized using Python's
pickle library. Serialization transforms the trained random forest models into bits that can be quickly
sent over a network and recreated in the new location.

2) Model Upload: The upload process involved specifying the model's location on the local computer,
the model's name, any relevant tags, and the Azure Machine Learning workspace where the model
was stored. Each model must have a unique name within a workspace. Versions of the model are
created automatically if a model name is registered more than once.

3) Azure ML Workspace: Azure ML is a platform-as-a-service (PaaS) offering for data processing in the
Azure Cloud. A workspace is a logical partition of computing and storage servers for a single project.
Models are indexed by names and versions within the workspace.

4) Model Download: Downloading the model can be done either programmatically (ideal for areas with
limited cloud connectivity) or manually (useful for checking model parameters and size before
deployment). The manual download is done through the Azure portal, a user-friendly interface for
managing resources in the Azure Cloud.

This automated pipeline inputs pre-processed imagery and outputs a classified raster. We then compared
the resulting latency and model accuracy in executing disease inference requests with models/data
deployed in the public cloud and edge clouds across three experimental training/testing conditions: (1)
cloud-based model and cloud-based SI data (control setup), (2) local model and local SI data, (3) local
model and cloud-based SI data. For more detail, please see Rubambiza & Romero Galvan et al. (2023).

Results:

We identified distinct spectral signatures for asymptomatic GLRaV-3 vines that differentiate them from
both non-infected and symptomatic grapevines and assessed scalability across 1,3, and 5m resolution.
Using random forest, we were able to differentiate between non-infected (NI), asymptomatic (aSy), and
symptomatic (Sy) GLRaV-3 infected vines based on spectral signatures alone. The two best-performing
models were trained on 3m resampled spectroscopic imagery with Savitzky-Golay smoothing applied and
dimensionality reduced to 10 principal components. These models achieved accuracies of 87% and 85%,
respectively, when discriminating between NI vs. aSy and NI vs. (aSy+Sy) vines. Model performance was
generally consistent across spatial scales from 1m to 5m but peaked at 3m resolution. Our models, while
accurate, tended to over-classify areas as diseased, particularly near the vineyard boundaries, likely due to
confounding co-occurring abiotic stress. When classifying between all three classes, most
misclassifications are between Sy and aSy vines, indicating that these two groups share enough spectral
similarity for the models to confuse them. The spectral similarity is likely GLRaV-3- infection, which is
known to affect vine biology prior to symptom appearance (Gao et al., 2020; Naidu et al., 2009). SWIR
wavelengths were crucial for accurate class differentiation, which suggests asymptomatic detection is
driven by disease physiology, as these wavelengths are the most correlated with vegetative biochemistry
and physiology. These results underscore the necessity of full-spectrum imagery for accurate
asymptomatic disease detection, as well as the need to reduce confounding due to co-occurring abiotic
stress. Future work will leverage time-series thermal sensing to reduce this source of error and improve
model precision. Further discussion of this work can be found in Romero Galvan et al. (2023).

We successfully implemented a fully automated pipeline for GLRaV-2 detection in red grape varieties
using real-time semantic segmentation networks and the autonomous PPB robot. This system navigates
autonomously and provides disease incidence ratings comparable to human scouting, thus contributing
valuable calibration data at scale for remote sensing systems. The PPB autonomously traversed through
the vineyard using RTK-GPS system following the predefined waypoints and collected the data using a
custom strobe light enhanced camera. A near real-time embedded network was successfully trained to
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segment infected regions and canopy areas to calculate incidence and symptom severity, and locations of
the infected vines identified by robot and human scouting were compared. Experimental results showed a
strong agreement between the two evaluation methods. The semantic segmentation system had a 5.94%
misdetection rate (94.06% accuracy) and 11.3% false positive rate, which strongly correlated with the
outcomes generated by human scouting (~90% accurate). However, it should be noted that the field had a
relatively high GLRaV-3 infection rate, and this evaluation may be biased due to imbalanced sampling.
Future work will iteratively refine and deploy this system to build improved GLRaV-3 detection models
across the entire SHIFT campaign imagery acquisition zone. Further discussion of this work can be found
in Liu et al. (2023).

We developed an adaptable cloud-based system for detecting GLRaV-3 in grapevine using airborne
imaging spectroscopy data. Our system only requires spectroscopic imagery from an airborne or
spaceborne source and a user-supplied shapefile specifying location coordinates and boundaries to run.
The stakeholder can supply additional training data to improve model accuracy in their specific location,
but this is not required. Local training on Edge with 4MB data achieved 84% accuracy in 27.1 seconds,
while Edge and Azure ML cloud configurations both achieved 86% accuracy, with runtimes of 35.6
seconds and 86.5 seconds, respectively. Our cloud-based architecture addresses three key goals: social
impact, research reproducibility, and user privacy. We achieve social impact by offering a user-friendly
service, deploying refined models as web endpoints for on-demand data inference. To maintain user
privacy, all sensitive data remains on the user's edge device. This design aspect is critical for widespread
adoption, as stakeholders frequently have reservations about, or outright restrictions against, proprietary
data sharing. The system also promotes reproducible research through Azure ML's features for systematic
model registration, tracking, and tagging. Further discussion of this work can be found in Rubambiza &
Romero Galvan et al. (2023).

Together, this integrated system enables data-driven decision-making for viticultural stakeholders by
leveraging cutting-edge spectral imaging, robotics, machine learning, and cloud computing to facilitate
scalable, asymptomatic disease detection. Our work improves management decision-making while
serving as a guide for others in the remote sensing community to develop accessible, use-inspired, remote
sensing applications for agricultural stakeholders. This integrated, transdisciplinary, systems-based
approach can aid grape growers to deploy their limited ground resources (e.g. molecular diagnostics,
human scouts) more strategically, thereby complementing existing farm ecosystems without replacing
invaluable user expertise. As we advance towards the imminent global imaging spectroscopy era, critical
next steps for this work include assessing scalability of our findings to spaceborne resolution (~20-30m),
implement a fully closed loop data training system between the ground robot and airborne imagery, and
merge this system into existing, open source, and user-friendly data management applications, such as the
MyEV tool suite (Bates, 2023), to achieve our overarching goal to empower agricultural stakeholders to
use spaceborne imaging spectroscopy data to inform disease management decision-making regardless of
their programming, remote sensing, and GIS expertise.
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