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Abstract:

Context and purpose of the study - In the actual scenario of climate change, optimization of water usage is
becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status
and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited
number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR
spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable
information towards precision irrigation.

Material and methods - Spectral measurements were acquired using a NIR micro spectrometer, operating in
the 900–1900 nm range, from a ground vehicle moving at 3 km/h. Spectra acquisition was carried out on the
northeast side of the canopy across six dates in 2021 season and five dates in 2022, in two VSP commercial
vineyards of Vitis vinifera L. Tempranillo and Graciano in the Rioja Appellation Board (Spain). Grapevines were
monitored at solar noon using stem water potential (Ψs) as reference indicator of plant water status. At each
date, 36 and 27 measurements of Ψs were taken in the Tempranillo and Graciano vineyards, making a total of
396 and 297 data respectively. Partial least squares (PLS) regression and the Variable Importance in the
Projection (VIP) method were used to build calibration and prediction models using the pooled data from the
two seasons for each variety. Multiple Linear Regression (MLR) was also applied to build simplified estimation
models using 8 and 10 spectral bands with the highest VIP scores (always >1). Determination of coefficient (R2)
and root mean square error (RMSE) were computed to assess model performance.

Results - Remarkable cross-validation models were built using the whole spectrum (117 wavelengths) with R2
cv

ranging from 0.62 to 0.80, and RMSECV between 0.115-0.138 MPa in Tempranillo and Graciano vineyards,
respectively. With the aim of simplifying model building, the 8 and 10 spectral bands showing the highest VIP
scores, with values above 1 in all instances, were selected to build MLR cross validation models of stem water
potential. In both varieties MLR8 and MLR10 (MLR models built with 8 and 10 wavelenghts only respectively)
yielded R2

cv ranging from 0.45-0.59 and RMSECV ~ 0.156-0.171 MPa. Although lower performance was achieved
with the simplified models they could still be utilized to classify and map the vineyard plots into three different
water status zones, susceptible of precise, differentiated irrigation.

Keywords: water stress, stem water potential, proximal sensing, partial least squares, multiple linear
regression

1. Introduction
Optimization of water usage is becoming critical in sustainable viticulture. In order to implement smart
irrigation, that is to provide vines under different water requirements with distinct irrigation doses, the utility of
high-spatial resolution information of plant water status within a vineyard plot has been reported
(Acevedo-Opazo et al. 2010; Cohen et al. 2017). Most of the current methods to assess grapevine water status
(Rienth & Scholasch 2019) are either destructive, time and labour consuming and monitor only a small, limited
number of plants.

Near infrared (NIR) spectroscopy (from 800-2500 nm) is a technique that provides rapid and non-destructive
data acquisition and has proven successful to monitor plant water status at leaf and canopy level in several
species including grapevines (Cozzolino 2017; Cottrozzi et al. 2017; Diago et al. 2018). Water is a primary
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constituent of grapevine leaves. In the NIR range the O-H second overtone shows around 978 nm, the O-H
stretch first overtone at 1454 nm, and the combination bands of O-H bonds in hydroxyl groups around
1930-1940 nm (Tugnolo et al. 2021).

NIR spectral sensors (covering the range from 1200-2100 nm) mounted on ground vehicles have demonstrated
good capability to estimate grapevine water status with determination coefficient of prediction (R2

P) reaching
values between 0.68-0.85 and root mean square error of prediction (RMSEP) ranging from 0.131 – 0.190 MPa
(Diago et al. 2018; Fernández-Novales et al. 2018). However, these devices are expensive, big sized and heavy.
Towards increased implementation of NIR spectroscopy in vineyard operations, more compact, miniaturized
spectral sensors, of lower cost, that facilitate spectra collection, in an easier and more affordable way are
required.

This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to
monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards
precision irrigation.

2. Material and methods
Vineyard plots. The experimental work was conducted in two commercial vineyards located in Tudelilla, La
Rioja, Spain during the summer months of July, August, September and October over two consecutive seasons,
2021 and 2022. The Tempranillo (Vitis vinifera L.) (TE) vineyard was planted in 2002 following a north-south
orientation (Lat. 42°,18’ 18.26’’, Long. -2°,7’ 14.15’’, Alt. 515 m) while the Graciano (Vitis vinifera L.) (GR)
vineyard was planted in 2016 following a northwest-southeast orientation (Lat. 42°,18’ 30.52’’, Long. -2°,7’
05.17’’, Alt. 497 m). Both varieties were grafted on rootstock R-110 and trained to a vertically shoot-positioned
(VSP) trellis system on a double-cordon Royat with vine spacing of 2.60 x 1.20 m.

Solely with the aim of generating a wide array of vine water status, three water regimes were established in a
completely randomized block design in each vineyard plot. The following irrigation treatments were
implemented: T0, full irrigation. Two water pipelines irrigating 6 L h-1 two hours per day, five days a week; T1,
moderate irrigation. A single water pipeline irrigating half the amount in T0, and T2, no irrigation. Four and
three replicates per irrigation treatment were applied in the TE and GR plots, respectively. Each replicate was
composed by three rows, of which only the middle row was monitored to avoid the edge effects. Each replicate
was represented by three consecutive sections of five plants, making a total of15 plants per replicate.

Spectral and vine water status measurements. Spectral measurements were acquired on-the-go, from a
moving vehicle (3 Km h-1) in which a NIR micro spectrometer (Insion 1.7 NT/H spectrometer, Insion Gmbh,
Obersulm, Germany) operating in the 900–1860 nm spectral range, at 8.2 nm resolution and 12.5 Hz acquisition
rate was installed. An integrated 20 W tungsten halogen lamp was also used as external lighting source. The
moving vehicle was a modified brushcutter (940 Sherpa 4WD XL, AS-motor, Bühlertann, Germany) also
equipped with an industrial computer (controlled via wifi by a tablet) and an RTK GPS receiver (AG Leader 6500
with RTK relay) with centimetric precision and 20Hz refresh rate.

Spectral measurements were conducted at solar noon (between 14:00 – 15:00 GMT+1) on the east side of the
TE canopy and on the northeast side of the GR canopies along six dates in 2021 season and five dates in 2022.
The spectrometer collimator and light source were placed at a height of 1.0 m from the ground, pointed to the
canopy on a lateral point of view at 0.30 m of distance. The stem water potential (Ψs) was chosen as the plant
water status reference method. The 15 plants in each replication were divided into three sets of 5 vines each. In
each set one leaf from the mid-upper part of the canopy of a random vine was selected and its stem water
potential measured using a Schölander pressure bomb (Model 600, PMS Instruments Co., Albany, USA) at the
same time as on-the-go spectral measurements were acquired. Prior to the Ψs measurement, the selected
leaves were covered with aluminium foil to drive them into dark adaptation for at least one hour.

Spectral processing and data analysis. Spectral processing was conducted according to the methodology
described in Diago et al. (2018) and Fernández-Novales et al. (2018). It consisted of the following steps: (i)
allocation of spectra to each field replication; (ii) spectra comparison and filtering of the measurements
acquired on-the-go against a grapevine leaf spectral signature collected under the same environmental
conditions (this is done to avoid the spectral information corresponding to canopy elements other than leaves,
such as gaps, wires, wood, clusters, etc.). After averaging the filtered grapevine leaf spectra and removal of light
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scattering effects, they were linked to their corresponding Ψs values. Spectral processing was conducted with
Matlab (version 2019a, The Mathworks Inc., Natick, MA, USA)). Calibration (c) and cross-validation (cv) models
for grapevine water status were built using the PLS Toolbox (version 8.1, Eigenvector Research, Inc., Manson,
WA, USA) software in conjunction with MATLAB (version 2019a, The Mathworks Inc., Natick, MA, USA). Partial
Least Squares (PLS) regression was used as the algorithm for training the plant water status prediction models.
The Variable Importance in the Projection (VIP) method (Wold et al. 1993) was applied to assess the relative
importance of each wavelength in the best PLS models, considering influential wavelengths those with VIP
scores greater than 1. Multiple Linear Regression (MLR) was also applied to build simplified estimation models
using 8 and 10 spectral bands with the highest VIP scores (always >1). The determination coefficient of
calibration (R2

c) and cross-validation (R2
cv), and the root mean square error of calibration (RMSEC) and

cross-validation (RMSECV) were calculated as performance metrics of the models.

Mapping. Maps of the actual (measured) and predicted values of Ψs (using the PLS models) were built using
empirical Spline interpolation (Earls and Dixon 2007), implemented in ArcGis 10.3 (Environmental Systems
Research Institute, Redlands, CA, USA).

3. Results and discussion
A summary of the Ψs data gathered across the two seasons for the two vineyards is presented in Table 1. As
shown in the table, the range of grapevines monitored and used to build the estimation models expanded from
no stressed vines (Ψs>-1.0 MPa) to highly stressed vines (Ψs<-1.4MPa), particularly in the case of the
Tempranillo vineyard. Such a wide variation is necessary to build robust estimation from the spectral
information. Likewise,
calibration and cross-validation models were built using the whole spectrum (117 wavelengths) with R2

cv

ranging from 0.62 to 0.80, and RMSECV between 0.115-0.138 MPa in Tempranillo and Graciano vineyards,
respectively.
These performance metrics are in good agreement with those reported in previous works using more expensive
(up to 10-fold) and more sophisticated spectrometers (Diago et al. 2018). Towards simplification of model
generation, a discrete number of spectral bands showing the highest VIP scores (data not shown), with values
above 1 in all instances, were selected to build MLR calibration and cross validation models of Ψs. In both
cultivars MLR8 and MLR10 (MLR models built with 8 and 10 wavelenghts only respectively) yielded R2

cv ranging
from 0.45-0.59 and RMSECV ~ 0.156-0.171 Mpa (Table 1). Although lower performance was achieved with the
simplified models compared to the partial least squares (PLS) model created using the whole spectra, they
could still be utilized to classify the vineyard plots into two-three different water status zones of low, medium
and high water stress, susceptible of precise, differentiated irrigation. As observed in Figure 1, in all three types
of models, the values adequately spread across the regression line in both cultivars and the two years of study.

In Figure 2, an example of maps of the variability of the reference (measured) and estimatedΨs (using the PLS
model) for one of the sampling dates in the Tempranillo and Graciano vineyards is shown. Increased and more
variation of water stress (intra-plot) was detected in the Tempranillo vineyard as compared to the Graciano one.
Good correspondence between the reference and estimated maps can also be observed, which supports the
potential usability of this non-destructive, spectral-based methodology to assess vineyard water status and to
help in the definition of differentiated irrigation subzones within a given vineyard.

From a practical standpoint, once the model has been built for a given vineyard (using data for at least several
seasons), a cost between 25-40 €/ha can be estimated, including data acquisition in the vineyard and
processing. This value may be reduced depending on the size of the plot and the possibility of increasing the
speed of the on-the-go spectral acquisition (from the current 2 km/h to increased values). An initial scanning of
the vineyard variability degree, for example, using a map of NDVI from the vineyard acquired in a previous
season may help to decide whether all rows need to be scanned or scanning every other 3 or more rows would
be enough to capture the variability in plant water status. This can vary from one plot to another, and will
certainly have an impact in the final cost of the operation. Further research is certainly needed to find out the
largest time windows in which in-field monitoring is not substantially affected by environmental changes. In any
case, the capability of monitor a large number of vines in comparison to current discrete measurements of a
very limited plants is unique and highly relevant in terms of the representativeness of vineyard water status
monitoring.
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4. Conclusions
This work has opened a new field of research involving the testing and in-field validation of a lower cost spectral
device to assess the spatial variability of vineyard water status in a semi-automated, non-destructive way, that
may become affordable in the mid term to become implemented in the grapegrowing industry to support
decision making regarding optimized vineyard irrigation, hence to increase watering sustainability.
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Table 1. Summary of data of stem water potential (Ψs) of Tempranillo and Graciano vineyards in the two years
of study (2021 and 2022). Performance metrics of the partial least squares (PLS) and Multiple Linear Regression
(MLR) models using eight (MLR8) and ten (MLR10) most relevant wavelengths as determined by the highest
Variable in Importance Projection (VIP) method. Values ofΨs expressed in MPa.

Variable  Tempranillo  Graciano 
n  396  297

Minimum  -2.15  -1.65
Maximum  -0.80  -0.10

Model type  PLS  MLR8  MLR10  PLS  MLR8  MLR10 
R2

C   0.83  0.57  0.61  0.78  0.61 0.64 
RMSEC    0.103  0.167  0.159  0.124 0.157   0.164

R2
CV   0.80  0.55  0.59  0.62 0.46 0.51

RMSECV   0.115  0.171  0.163  0.138 0.164 0.157
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n: number of data; R2
c: determination coefficient of calibration; R2

cv: determination coefficient of cross validation; RMSEC:
root mean square error of calibration (MPa); RMSECV: root mean square error of cross validation (MPa).

Figure 1: Best Partial Least Squares (PLS) (a, b); Multiple Linear Regression with 10 spectral bands (MLR10) (c, d)
and Multiple Linear Regression with 8 spectral bands (MLR8) (e, f) models of cross validation forΨs estimation
in Tempranillo (a, c, e) and Graciano (b, d, f) vineyards over the two seasons (2021 and 2022).

Figure 2. Example maps of (a, c) reference and (b, d) predicted values of stem water potential (Ψs) in the

Tempranillo (a, b) and Graciano (c, d) vineyard respectively on the 10th and 12th August 2021.
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