
21st GiESCO International Meeting: ‘A Multidisciplinary Vision towards Sustainable Viticulture’ 

 

June 23 - 28, 2019 | Thessaloniki | Greece  GiESCO Thessaloniki |  574 

AROMA AND QUALITY ASSESSMENT FOR VERTICAL VINTAGES USING MACHINE 
LEARNING MODELLING BASED ON WEATHER AND MANAGEMENT INFORMATION 

 

Authors:Sigfredo FUENTES
1*

, Claudia GONZALEZ VIEJO
1
, Xiaoyi WANG

1
 and Damir D. TORRICO

1
 

 
1 School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3010, 

Australia 

*Corresponding author: sfuentes@unimelb.edu.au 

Abstract: 
Context and purpose of the study ‐ Wine quality traits are usually given by parameters such as aroma 
profile, total acidity, alcohol content, colour and phenolic content, among others. These are highly 
dependent on the weather conditions during the growing season and management strategies. 
Therefore, it is important to develop predictive models using machine learning (ML) algorithms to assess 
and predict wine quality traits before the winemaking process. 
Material and methods ‐ Samples in duplicates of Pinot Noir wines from vertical vintages (2008 to 2013) 
of the same winery located in Macedon Ranges, Victoria, Australia were used to assess different 
chemical analytics such as i) aromas using gas chromatography – mass spectrometry, ii) color density, iii) 
color hue, iv) degree of red pigmentation, v) total red pigments, vi) total phenolics, vii) pH, viii) total 
acidity (TA), and ix) alcohol content. Data from weather conditions from the specific vintages were 
obtained both from the bureau of meteorology (BoM) and the Australian Wine Availability Project 
(AWAP) climate databases. Such data consisted of: i) solar exposure from veraison to harvest (V‐H), ii) 
solar exposure from September to harvest (S‐H), iii) maximum January solar exposure, iv) degree days 
from S‐H, v) maximum January evaporation, vi) mean maximum temperature from veraison to harvest, 
vii) mean minimum temperature from V‐H, viii) water balance from S‐H, ix) solar exposure from V‐H, x) 
degree hour accumulation with base 25 – 30 °C, xi) degree hour accumulation with base 25 °C, xii) 
degree hour accumulation with base 30 °C, xiii) degree hour accumulation with base 35 °C, and xiv) total 
cumulative degree days accumulation with base 10 °C. All data were used to develop two machine 
learning (ML) regression models using Matlab® R2018b. The best models obtained were using artificial 
neural networks (ANN) with the Levenberg‐Marquardt algorithm with 5 neurons for Model 1 and 9 
neurons for Model 2. Model 1 was developed using the 14 parameters from the weather data as inputs 
to predict 21 aromas found in the wines from the six different vinatges. Model 2 was developed using 
the same 14 parameters from weather data and the eight chemical parameters as targets and outputs. 
Results ‐ Both models obtained presented very high accuracy to predict wine quality trait parameters. 
Model 1 had an overall correlation coefficient R = 0.99 with a high performance based on the mean 
squared error (MSE = 0.01), while Model 2 had an overall correlation coefficient R = 0.98 with a high 
performance (MSE = 0.03). These models would aid in the prediction of wine quality traits before its 
production, which would give anticipated information to winemakers about the product they would 
obtain to make early decisions on wine style variations.  
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1. Introduction 
Red wine has a wide variety of aromatic volatile compounds, which, along with some chemical 

parameters such as total acidity, pH, alcohol content, color and phenolic content, among others are 
responsible for the specific wine quality. These components depend on many different factors such as 
cultivar, weather, type of soil, sun exposure, water status and canopy, among others (González‐Barreiro, 
Rial‐Otero, Cancho‐Grande, & Simal‐Gándara, 2015). According to Jackson and Lombard (1993), a lower 
TA and higher pH are developed under warmer temperatures, which provide a wine with lower quality 
traits. Likewise, at higher temperatures lower aromatic volatile compounds are produced, which also 
leads to lower quality wines. Regarding the effect of temperature in red grapes color, it has been 
reported that the best temperature range to develop anthocyanins is 17 – 26 °C as lower or higher 
temperatures lead to lower color pigmentation (Drappier, Thibon, Rabot, & Geny‐Denis, 2019; Jackson 
& Lombard, 1993; Pirie, 1977).  
 Up to date, there are no studies involving the prediction of chemical and aromatic compounds 
in wine based on weather conditions to predict the final wine quality using machine learning. Therefore, 
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the aim of this study was to develop machine learning (ML) models using weather information from 
vinatges to predict wine quality traits before the winemaking process in vertical vintages (2008 – 2013) 
of Pinot Noir wines from the same winery. This was achieved by developing two artificial neural network 
(ANN) models using 14 weather‐related parameters from the bureau of meteorology (BoM) and the 
Australian Wine Availability Project (AWAP) climate database to predict i) 21 aromatic volatile 
compounds and ii) eight chemical parameters.  
 
2. Material and methods 
Study area  

All the wines and weather data used for this study were taken for Pinot Noir cultivar and 
vintages from 2008 – 2013 and located in Macedon Ranges in the sub‐region of Romsey/Lancefield, 
south of the Great Dividing Range in Victoria, Australia. This site has an elevation of 540 m.a.s.l and is 
located at distance from the mitigating influence of the ocean.  
 
Weather data acquisition 
 For all vintages (2008 – 2013), weather data conditions such as i) solar exposure from veraison 
to harvest (V‐H), ii) solar exposure from September to harvest (S‐H), iii) maximum January solar 
exposure, iv) degree days from S‐H, v) maximum January evaporation, vi) mean maximum temperature 
from V‐H and vii) mean minimum temperature from V‐H were obtained from the BoM. While other 
parameters such as viii) water balance from S‐H (WB‐S‐H), ix) solar exposure from V‐H, x) accumulation 
of degree hours with base 25 – 30 °C, xi) degree hours, base 25 °C, xii) degree hours, base 30 °C, xiii) 
degree hours, base 35 °C, and xiv) total cumulative degree days with base 10 °C were obtained from the 
Australian Water Availability Project (AWAP) database.  
 
Gas Chromatography – Mass Spectroscopy 
 Pinot Noir wine samples from all vintages (2008 – 2013) were analyzed for volatile compounds 
using a gas chromatograph 6850 series II with mass selective detector 5873 (GC‐MSD; Agilent 
Technologies, Inc., Santa Clara, CA, USA) along with an autosampler PAL 120 (CTC Analytics AG, Zwingen, 
Switzerland).  A J&W DB‐WAX column (Agilent Technologies, Inc., Santa Clara, CA, USA) with a length of 
30 m, inner diameter 0.25 mm and 0.25 µm film was used. Helium (ultrahigh purity, BOC Australia, 
North Ryde, NSW, Australia) was used as carrier gas at a constant flow of 2.0 ml/min. Samples were 
injected using the headspace method with a solid‐phase microextraction (SPME) polydimethylsiloxane 
(PDMS) 100 µm fiber (Agilent Technologies, Inc., Santa Clara, CA, USA). A total of 1 mL of each sample 
was diluted in 9 mL of Milli‐Q water along with 2 g of sodium chloride and 200 µL of 4‐octanol as 
internal standard (10 mg L‐1) and ethyl nonanoate for quality control (10 mL L‐1). This was poured into a 
20 mL screw cap vial with an 18 mm magnetic screw cap with a polytetrafluoroethylene (PTFE) and 
silicone liner, this vial was agitated at 220 rpm at 35 °C for 10 min.  A splitless mode was used for the 
inlet at 50:1 and opened after 30 s. The oven was set at 40 °C for 4 min and brought up to 220 °C for 20 
min. The National Institute of Standards and Technology (NIST; National Institute of Standards and 
Technology, Gaithersburg, MD, United States) library was used to identify compounds. The peak area of 
the identified compounds was obtained. 
 
Chemical measurements 
 The pH of all wine samples was measured with 50 mL of wine using a HI 5221 pH‐meter (Hanna 
Instruments, Keysborough Vic, Australia), the instrument was previously calibrated with buffer solutions 
for pH 7, 4 and 10. Furthermore, titratable acidity (TA) was measured through alkaline titration with 
sodium hydroxide 0.1 N (Sigma‐Aldrich Chemicals company, St. Louis, MO, USA) according to the 
Association of Official Agricultural Chemists (AOAC) Official Method 962.12. On the other hand, a M501 
single beam scanning UV/visible spectrophotometer (Spectronic Camspec Ltd, Leeds, UK) was used to 
calculate wine color density, wine color hue, degree of red pigmentation, total red pigments and total 
phenolics. Wine color density (CD) was calculated using the absorbance values at 420, 520 and 620 nm 
using the equation CD = A420 + A520 + A620, while for wine color hue (CH) used the equation CH = A420 / 
A520. Total phenolics were calculated using the absorbance value at 740 nm and the diluted sample with 
gallic acid (Sigma‐Aldrich Chemicals company, St. Louis, MO, USA) at a dilution factor of 6. Total red 
pigments and degree of red pigmentation were measured using the absorbance values at 520 nm using 
1 M of hydrochloric acid (Sigma‐Aldrich Chemicals company, St. Louis, MO, USA) to acidify the sample to 
pH 1. Alcohol was measured using an ebulliometer. 
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Statistical analysis 
 Two ML models were obtained, having the best performance, using ANN, specifically the 
Levenberg‐Marquardt training algorithm. Model 1 was developed to predict 21 aromatic volatile 
compounds using as inputs the 14 parameters from weather conditions described. On the other hand, 
Model 2 was developed with the same 14 weather‐related parameters as inputs to predict eight 
chemical components. Both models were developed using random data division with 70% of the 
samples for training, 15% for validation with a mean squared error performance algorithm and 15% for 
testing using a default derivative function. A trimming was conducted using 3, 5, 9 and 10 neurons to 
find the best models with no over‐ or underfitting, finding that 5 neurons were best for Model 1 and 9 
neurons for Model 2. Figure 1 shows the diagrams for both models. Statistical data obtained for the 
models consisted of correlation coefficient (R), slope (b) and performance as means squared error 
(MSE). 

 
3. Results and discussion 
 
3.1. Aromatic Volatile Compounds  
 Table 1 shows the aromatic volatile compounds found in the wine samples and the aromas 
associated to them. Overall, all wine samples measured, presented the highest peaks for fruity, grape, 
banana, cognac and mushroom aromas (ethyl acetate, ethyl nonanoate and isoamyl alcohol). It can be 
observed that the 2008 vintage had the highest peak area for the 1‐hexanol, which is associated with 
pungent, alcoholic and fruity aromas, but was the lowest in ethyl octanoate (musty / creamy / 
mushroom) and ethyl decanoate (fruity / apple) when compared to the other samples. Vintage 2009 
was the highest in fruity / grape (ethyl acetate), fruity / strawberry (Butanoic acid, 2‐methyl‐, ethyl 
ester), sweet apple / pineapple (ethyl isovalerate), banana / cognac (isoamyl alcohol and isoamyl 
acetate), green / citrus / waxy (1‐octanol) and rose / floral and bready (phenethyl alcohol). On the other 
hand, vintage 2010 was the highest in diethyl succinate (cooked apple). The highest peak areas for ethyl 
butyrate, ethyl heptanoate and isobutanol were found in vintage 2011, while for vintage 2012 the 
highest peaks were ethyl hexanoate, ethyl octanoate, ethyl decanoate, hexyl acetate, ethyl lactate, and 
1‐heptanol. Vintage 2013 presented the highest peak area for cognac / apple / winey (ethyl nonanoate), 
floral / sweet (Octanoic acid, 2‐methyl‐, ethyl ester) and floral / rose (benzyl alcohol). 

Table 1. Peak area of the aromatic volatile compounds found in the wine samples and the aroma 
associated 

Volatile compound Aroma* 2008 2009 2010 2011 2012 2013 

Ethyl acetate Fruity / Grape 1985 2159 1927 2477 2000 2069 

Ethyl butyrate 
Sweet / Fruity / 

Apple 
103 175 60 190 151 138 

Ethyl hexanoate 
Fruity / 

Pineapple 
927 1492 796 1693 1708 1191 

Ethyl heptanoate Pineapple / Berry 19 19 19 20 17 17 

Ethyl octanoate 
Musty / Creamy / 

Mushroom 
1222 1570 1379 2061 2200 2061 

Ethyl nonanoate 
Cognac / Apple / 

Winey 
5399 5113 6090 6182 5932 6310 

Ethyl decanoate Fruity / Apple 85 93 140 143 194 183 

Butanoic acid, 2‐methyl‐, ethyl ester 
Fruity / 

Strawberry 
112 161 59 87 72 80 

Ethyl isovalerate 
Sweet apple / 

Pineapple 
102 208 75 109 64 87 

Isobutanol Winey 281 332 277 386 217 370 

Isoamyl alcohol Banana / Cognac 4446 5113 3604 4760 3471 4262 

Hexyl acetate Apple / Pear 12 14 16 7 17 11 

Ethyl lactate Fruity / Butter 200 173 202 221 246 191 

Octanoic acid, 2‐methyl‐, ethyl ester Floral / Sweet 139 32 48 47 49 162 
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 Diethyl succinate Cooked apple 273 283 293 166 269 234 

Isoamyl acetate Banana 450 542 364 451 327 499 

1‐Hexanol 
Pungent / Fruity / 

Alcoholic 
387 301 257 370 313 243 

1‐Heptanol 
Pungent / Leafy 

green  
27 26 20 38 43 19 

1‐Octanol 
Green / Citrus / 

Waxy 
25 28 15 22 20 16 

Benzyl alcohol Floral / Rose 17 14 27 23 25 28 

Phenethyl alcohol 
Rose / Floral / 

Bready 
102 125 102 90 85 102 

*The aromas were obtained from The Good Scents Company (2018) 
Abbreviations: W = wine, the number in the samples indicate the vintage 

 
 The aromatic compounds identified in the wine samples analyzed have been previously 
reported for Pinot Noir wines (Fang & Qian, 2005; Girard, Yuksel, Cliff, Delaquis, & Reynolds, 2001; Song 
et al., 2015). All compounds found belong to esters and alcohols groups, which have been reported as 
the largest groups of volatile compounds in red wines (Girard et al., 2001; Torrea et al., 2011). The 
esters group provide fruit‐related aromas, while alcohols are more pungent, alcoholic and vegetal‐like 
aromas such as floral and green (Dashko et al., 2015; The Good Scents Company, 2018; Ugliano, Travis, 
Francis, & Henschke, 2010). The 2011 vintage had the largest peak area of total esters associated lower 
temperatures (9 – 19 °C) and solar exposure and highest water balance, as it was a rainy year. This is in 
accordance with Jackson and Lombard (1993) who reported that higher fruit aroma intensities are found 
at mean temperatures between 9 and 20 °C. On the other hand, the wine sample from 2008 presented 
the largest peak are of total alcohols, regarding the weather conditions, this season presented the 
highest degree days S‐H and highest maximum January evaporation, this coincides with the findings 
from Bonada et al. (2015), who reported higher floral‐related aromas with higher temperatures. Wine 
from 2010 had the lowest peak area for total esters, that vintage season had the highest mean 
minimum temperature V‐H. Wine from 2013 had the lowest peak area for total alcohols and that year 
presented the highest solar exposure V‐H and highest degree hours with base 25 – 30 °C, degree hours 
base 25 °C and total cumulative degree days. Wines with high esters and low alcohols present more 
intensive aromas (Dashko et al., 2015; Jackson & Lombard, 1993).  
 
3.2. Chemical parameters 
 Table 2 shows the results of the chemical parameters measured for all samples. It can be 
observed that the 2011 vintage presented the lowest wine color density, highest color hue, lowest total 
red pigments and lowest phenolics. It also had slightly higher TA and pH, along with 2008, had the 
lowest alcohol percentage. On the other hand, wine from 2009 had the highest wine color density, while 
2008 had the highest degree of red pigmentation and total phenolics. Regarding the total red pigments 
and alcohol content, 2012 was the highest, while 2013 was the lowest in wine color hue and degree of 
red pigmentation. 
 
Table 2. Results of the chemical parameters measured for each sample 

Vintage 2008 2009 2010 2011 2012 2013 

Wine colour density 4.46 4.57 3.29 2.24 3.69 3.18 

Wine colour hue 1.18 1.22 1.21 1.26 1.15 1.05 

Degree of red pigment coloration (%) 62.56 56.01 51.52 45.30 39.50 36.01 

Total red pigments (AU) 3.27 3.67 2.89 2.18 4.35 4.32 

Total phenolics (AU) 50.02 45.91 33.66 23.74 28.69 30.09 

pH 3.54 3.51 3.46 3.56 3.49 3.51 

Titratable Acidity (g L‐1) 6.1 5.9 5.9 6.15 6.05 5.8 

Alcohol (%) 12.6 13.9 13.8 12.7 14.2 13.7 
 

 Wines from the 2009 and 2013 vintages had the lowest TA values and the highest mean 
maximum and minimum temperatures. These results also agree with Van Leeuwen and Darriet (2016), 
and Jackson and Lombard (1993) who reported that in warmer weather conditions acid production, 
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especially malic acid, is lower thus TA tends to be low (< 6 g L
‐1

). It has been reported in previous studies 
that in Pinot Noir there was a more intense color at temperatures around 20 °C during daytime 
compared to those grown at higher temperatures close to 30 °C (Flamini, Mattivi, Rosso, Arapitsas, & 
Bavaresco, 2013; Kliewer & Torres, 1972; Teixeira, Eiras‐Dias, Castellarin, & Gerós, 2013). However, in 
this study the highest color density, degree of red pigmentation and total phenolics were found in wines 
from 2008 and 2009, which presented mean maximum temperatures close to 30°C with 26 and 29 °C, 
respectively. This coincides with Teixeira et al. (2013) who reported that the in warmer climates with 
higher sun exposure, the phenolics and anthocyanins concentration is higher, producing higher quality 
wines. Jackson and Lombard (1993), mentioned that day temperatures had less effect on the wine color 
than night temperatures and reported night‐time temperatures close to 15 °C provided better 
pigmentation, this coincides with the findings in the present paper as 2008, 2009 and 2010 presented 
mean minimum temperatures close to 15 °C (10 – 13 °C). Regarding alcohol content, warmer climates 
produce higher alcohol wines compared to cooler climates (Becker, 1985), which coincides with the 
findings in the present study. 
 
3.3 Machine Learning Modelling  
 As shown in Table 3, Model 1 had a very high correlation coefficient (R = 0.99) for all three 
stages and the overall model with a high performance (MSE = 0.01) and b = 1.00. The overall model 
presented a low percentage of outliers (6.3%) based on the 95% confidence bounds (Figure 1A). 
Likewise, Model 2 had a high correlation coefficient R = 0.98 for the overall model, and R > 0.96 for the 
three stages with a high performance and slope close to unity (b ~ 1). The overall model (Model 2), also 
presented a low percentage of outliers (6.6%) based on the 95% confidence bounds (Figure 1B). In both 
models, the fact that the training performance was lower than the one for validation and testing and 
that the performance of validation and testing is the same, shows that there was no overfitting in the 
models. Another sign of no overfitting is that the validation and training R were very close in both 
models.  
 
Table 3. Statistical results of the machine learning models showing the correlation coefficient (R), performance 
based on means squared error (MSE) and slope 

Stage Samples Observations R MSE Slope 

Model 1 

Training 26 546 0.99 <0.01 1.00 

Validation 5 105 0.99 0.01 1.00 
Testing 5 105 0.99 0.01 0.99 

Overall 36 756 0.99 ‐ 1.00 

Model 2 

Training 26 208 0.99 0.01 0.98 

Validation 5 40 0.97 0.03 0.95 

Testing 5 40 0.96 0.03 0.96 

Overall 36 288 0.98 ‐ 0.98 

 The very high accuracy of both models showed that it is possible to predict the quality of the 
wines based on the aromatic volatile compounds (Model 1) and chemical compounds (Model 2) as a 
result of the weather data before harvest. This is due to the aforementioned relationship between the 
different parameters and the weather conditions, especially due to temperature and solar exposure. 
Therefore, these models could aid in the early decision‐making for the wineries to foresee the final 
product they will obtain, which may modify their original production plans. This would allow to reduce 
any economical losses due to unexpected wine quality when assessed once the production is ready.  
 
4. Conclusions 

The link between  weather conditions, quality of grapes and consequently the wine quality 
traits allowed to obtain highly accurate ML models (R > 0.98), which  would aid in the prediction of wine 
quality based on aromas and chemical parameters before its production, which would give anticipated 
information to winemakers about the product they would obtain to make early decisions of wine style 
and avoid any economical losses. 
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Figure 1. Model diagrams showing a the two‐layer feedforward networks with sigmoid functions using 14 weather‐

related parameters and A) 5 hidden neurons and 21 outputs / targets for Model 1, and B) 9 neurons and 8 outputs / 

targets for Model 2. 

 

A 

B 



21st GiESCO International Meeting: ‘A Multidisciplinary Vision towards Sustainable Viticulture’ 

 

June 23 - 28, 2019 | Thessaloniki | Greece  GiESCO Thessaloniki |  581 

 
 
 

 
 
Figure 2. Overall models showing the observed (x‐axis) and estimated (y‐axis) values for the 
output parameters for A) 21 aromatic volatile compounds (Model 1) and B) 8 chemical 
parameters (Model 2) using 14 weather‐related variables. 95% confidence bounds are shown 
in both models.  
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