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Abstract: 
Context and purpose of the study‐ Knowledge of the spatial‐temporal variation of the grape 
composition within a vineyard may assist decision making regarding sampling and vineyard 
management, especially if selective harvest is aimed. To have a truthful picture of the spatial‐temporal 
dynamics of grape composition evolution during ripening in a vineyard, a huge amount of 
measurements at different timings and spatial positions are required. Unfortunately, the quick in‐field 
measurement of a vast number of samples is very hard for simple variables such as total soluble solids 
(TSS), and impossible in the case of analyzing secondary metabolites, like anthocyanin concentrations. 
The goal of this study was the in‐field assessment and mapping of the TSS, acidity parameters and 
anthocyanin concentrations in a Tempranillo (Vitis vinifera L.) vineyard, using non‐destructive, on‐the‐go 
hyperspectral imaging (HSI). 
Material and methods‐ HSI of grapevine canopies was carried out using a line‐scan hyperspectral 
camera working in the Vis‐NIR range (400‐1000 nm) installed in all‐terrain‐vehicle, moving at 5 km/h in a 
commercial Tempranillo (Vitis vinifera L.) vineyard, under natural illumination conditions. 
Measurements were carried out at several dates during the ripening period over two consecutive 
seasons in 2017 and 2018. TSS, titratable acidity (TA), pH and anthocyanin concentrations analyses were 
also performed using gold standard, wet chemistry methods for model building and validation purposes. 
Convolutional neural networks (CNN) were applied for the development of regression models. The 
prediction results from the regression models were used for mapping (using GIS software) the evolution 
and distribution of grape composition in time–several datesand space–the vineyard plot. 
Results‐ Prediction models were generated for the different grape composition parameters, yielding 
determination coefficients (R

2
) above 0.85 for TSS and TA and ~0.70 for pH and anthocyanin 

concentrations respectively. The built maps illustrated the seasonal dynamics of TSS and anthocyanin 
accumulation in the studied vineyard. The obtained results evidenced the potential of hyperspectral 
imaging acquired on‐the‐go for the non‐destructive, robust and massive assessment of TSS and total 
anthocyanin contents in grape berries in the vineyard.  HIS may become a useful tool for decision‐
making on harvest selection and berry fate for winemaking. 
Keywords: spatial‐temporal variability, total soluble solids, berry anthocyanins, Vis‐NIR spectral range, 
acidity parameters, prediction models. 
 
1. Introduction 
Wine quality is directly linked to the compounds present in grapes (Kennedy 2010). Berry ripening is 
frequently tracked by measuring the amount of TSS and acidity parameters, and, in the case of red 
grapes, the anthocyanin concentration of berries also. The balance between the sugar and acidity values 
is widely used to decide about harvest timing and together with the anthocyanin content (red varieties) 
are relevant to fix grape prices in many wineries and cooperatives worldwide (Bramley et al. 2011).  
Current methods to determine the TSS, acidity variables, such as pH and titratable acidity, as well as the 
anthocyanin contents in grapes are destructive, require manual berry sampling in the vineyard and in 
general terms are time and labour demanding (Iland et al. 2004). Therefore, it would be desirable and 
relevant to the wine industry to have rapid, robust and non‐destructive methods to assess the 
concentration of the main compositional parameters in grape berries along ripening. Moreover, the 
knowledge of the spatial–temporal variation of grape composition in fruit within a vineyard could be 
helpful to improve berry sampling, vineyard management and enable selective harvesting. This would 
require a large number of measurements, which is not feasible with the current analytical methods.  
In the last years, hyperspectral imaging (HSI) has emerged as a powerful technology for non‐destructive 
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analysis in several agricultural, food and safety applications (Sun 2010, Park and Lu 2015). HSI combines 
the potential of spectroscopy modelling with two‐dimensional digital imaging, providing a vast amount 
of relevant information of the imaged samples. In order to convert the obtained spectral data into 
useful knowledge and results of grape composition, advanced computing solutions, such as machine 
learning (Jordan and Mitchell 2015) and deep learning (LeCun et al., 2015) algorithms are required. 
Convolutional Neural Networks (CNNs) are the most common implementation of deep learning (LeCun 
et al., 2015), being extensively used in the last years in many scientific and industrial fields. In 
agriculture, for instance, the huge potential of CNNs in computer vision has been employed for fruit 
detection and yield estimation in different crops (Sa et al. 2016). 
The goal of this study was the in‐field assessment and mapping of the TSS, acidity parameters and 
anthocyanin concentrations in a Tempranillo (Vitis vinifera L.) vineyard, using non‐destructive, on‐the‐go 
hyperspectral imaging (HSI) and the development of predictive models for these compositional variables 
using CNNs. 
 

2. Material and methods 
Experimental layout and HSI acquisition 
The experiment was carried out in two consecutive seasons, 2017 and 2018 in two different commercial 
vineyards. In 2017, HSI was acquired along four dates between veraison and harvest in vineyard site #1. 
This was a 0.7 ha commercial vineyard located in Ábalos, La Rioja, Spain (latitude 42_34045.700, 
longitude −2_42027.7800, 628 m asl). Vitis vinifera (L.) cultivar Tempranillo grapevines were planted in 
2010, on rootstock R‐110 and trained to a vertically shoot positioned (VSP) trellis system. Rows were 
oriented northeast–southwest and row and vine spacing was 2.2 and 1.0 m, respectively. In 2018, HSI 
measurements were carried out between veraison and harvest in three distinct dates in vineyard site 
#2. This was a commercial Tempranillo (Vitis vinifera L.) vineyard located in Tudelilla, La Rioja, Spain (Lat. 

42◦18’18.26’’, Long. −2◦ 7’ 14.15’’, 515m asl). Grapevines were planted in 2002 (north‐south 
orientation) with vine spacing of 2.60m between rows and 1.20m between vines, and trained to a 
vertically shoot‐positioned trellis system on a double‐cordon Royat. 
In both plots, three rows were selected and within each row 12 blocks of ~5 m containing five vines each 
were chosen for HSI acquisition and grape berry sampling and analysis. Hyperspectral images were 
acquired on‐the‐go at 5 km/h (from the eastern side of the canopy, which was partially defoliated 
around the fruiting zone) using a push broom Resonon Pika L ViS‐NIR hyperspectral imaging camera 
(Resonon, Bozeman, MA, USA) that was mounted on an all‐terrain vehicle (ATV) (Trail Boss 330, Polaris 
Industries, MN, USA). The spectral resolution of the camera was 2.1 nm (300 bands from 400 to 1000 
nm), with 300 pixels of spatial resolution. The camera was placed at 2.0 m of distance from the canopy, 
and performed a vertical recording line of 1.32 m (field of view of 36.5º) which comprised the whole 
vine canopy, including the fruiting zone. Prior to hyperspectral imaging, both dark and white reference 
measurements were manually conducted.  For the dark reference, the inherent electronic noise was 
measured, while for the white reference, a Spectralon (with a reflectance > 95%) was presented to the 
camera simulating the same position and distance to the canopy. The spectral light intensity values 
collected by the camera for the references and canopy measurements were converted into reflectance 
values. Hyperspectral images were georeferenced using an Ag Leader 6500GPS receiver (Ag Leader 
Technology, Ames, IA, USA) with RTK correction installed in the ATV. 
Grape composition analysis 
In both seasons, for each five‐vine block a number of exposed clusters (between 3 and 5 per vine) were 
identified. In season 2017, for each visible cluster, a total of 10–15 visible berries were removed and 
placed in labelled plastic bags for subsequent chemical analysis. On average, 200 grape berries per block 
were collected at each date. In season 2018, the whole visible cluster was manually picked and placed 
into a plastic bag. Berry (2017) or cluster (2018) samples were then transported, in portable 
refrigerators, to the laboratory. In 2017, berries were stored at −20ºC un�l chemical analysis of TSS and 
anthocyanin concentrations were completed. In 2018, upon arrival to the laboratory each cluster was 
manually destemmed, berries counted and weighted and split into two subsamples of 50 berries each. 
One of them was used to determine the TSS, pH and titratable acidity, while the other one was stored at 
−20ºC un�l analysis of the anthocyanins. TSS, pH and TA analysis of berries were carried out following 
the OIV methods (OIV 2009). Anthocyanins were determined after Iland et al. (2004) and expressed as 
mg/g of berry. 
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Image processing and model development 
From each hyperspectral image, spectra belonging to grape clusters were selected using a “signature” of 
a grape reference spectrum, which was manually acquired by selecting grape spectra from all the 
images (regions of approximately 200 spectra) and then averaging them. The signature spectrum was 
compared pixel‐wise (spectra by spectra) for each image, and the Pearson’s correlation coefficient 
between both spectra was computed. If this correlation surpassed the 0.87 mark, the image spectra was 
labeled as grape spectra. All images were processed using this methodology for grape spectra 
identification.  
In each season the data set used for model development was composed by the grape berry spectra 
images and the values of the measured grape composition parameters. In 2017, 139 samples were 
collected, while the 2018 data set comprised 143 samples. Regression models were developed using 
CNNs. Unlike other CNN usages with RGB imaging, the networks implemented in this study convolved 
over one dimension (the spectral one), and no padding was used. The architecture of the CNNs was 
designed based on that from Windrim et al. (2016), that already proved to be useful in other HSI 
applications in agriculture (Wendel et al., 2018; Gutiérrez et al., 2019). The architecture comprised two 
convolutional layers and two fully connected layers, and the network was trained through 50 iterations 
(batch size of 5) using an RMSprop optimizer. The data set were split into train sets (80% of the original 
data set) and external validation sets (20%). The latter was used as validation data for score computing 
during the training of the networks. 
Mapping 
Interpolated TSS and anthocyanin concentration prediction maps for season 2017 were generated using 
kriging interpolation (Oliver and Webster 1990) implemented in ArcMap 10.5 (ArcGIS Desktop: Release 
10. Redlands, CA, USA: Environmental Systems Research Institute). 
 
3. Results and discussion 
This two‐year study introduces an innovative solution for the non‐destructive, in‐field estimation of 
relevant grape compositional parameters using on‐the‐go HSI in the vineyard. 
For the grape composition variables measured in the two seasons, the prediction results of the TSS and 
anthocyanin models developed using the CNNs are shown in Figure 1a and 1b, respectively. For both 
parameters, the two‐year model yielded determination coefficients (R

2
) around to or above 0.75, and 

the regression lines were close to the 1:1 line with an even distribution of results. These results agree 
with those reported in a previous work (Gutiérrez et al. 2019) in which a different machine learning 
approach (Support Vector Machine) was used to develop predictive models. However, the RMSE values 
in the present work were found to be larger (Figure 1).  
Titratable acidity (TA) and pH are probably the two most widely measured grape and must acidity 
variables for ripening assessment. The developed models using CNNs from HSI data acquired in season 
2018 yielded R

2
 values ~0.70 for pH (Figure 2a) and 0.93 for TA (Figure 2b) with RMSE values of 0.229 

and 1.103, respectively. These are very remarkable outcomes, as it has to be highlighted that HSI 
measurements were taken contactless (~1m away) from the clusters hanging on the vines. While 
predictions of TSS and anthocyanins from on‐the‐go HSI had been reported in a previous work 
(Gutiérrez et al. 2019) the capability of this non‐destructive spectral technique, in combination with a 
state‐of‐the‐art artificial intelligence algorithm, like the CNNs, to successfully estimate pH and TA along 
maturation is for the first time (to the best of our knowledge) presented in this study.    
Several works have evidenced that the assessment of key berry composition variables throughout 
ripening is feasible using spectroscopy on intact fruit samples (Cao et al. 2010, González‐Caballero et al. 
2010, Bellincontro et al. 2011), with values of R

2
 and RMSE comparable to those found in the present 

research. However, in those works, spectral measurements were conducted mostly under laboratory 
conditions, where sample position, ambient temperature and lighting conditions can be controlled and 
homogeneous. On the other hand, in‐field monitoring of grape composition using spectroscopy has 
been less often reported (Barnaba et al. 2014; Urraca et al. 2016), and in most cases using portable 
manual devices to yield discrete measurements. The step towards contactless, on‐the‐go grape 
composition monitoring in the vineyard can be facilitated by the use of HSI, as demonstrated in this 
research. 
Since the hyperspectral images were georeferenced, it was also possible to map the spatial‐temporal 
dynamics of the grape compositional variables along the ripening process. As an example, the prediction 
maps for TSS and anthocyanins in the four measuring dates of season 2017 are shown in Figure 3. The 
accumulation of TSS (Figure 3a) followed an increasing trend until the third date (18th September). The 
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maximum TSS concentrations (26 °Brix) were reached in the latter stages of ripening but during the last 
ten days between the third and fourth sampling date only a slight increase in TSS occurred. The south 
area of the vineyard was the fastest to ripen. In the case of the anthocyanin concentration, large 
increments were detected across the four dates, from little variation (from 0.07 to 0.30 mg/g berry) on 
11 August, to a plot with higher anthocyanin concentration and variability on 28

th
  September (from 1.07 

to 2.28 mg/g berry). Differently from the TSS, anthocyanins kept accumulating in the berries along the 
four dates, as evidenced by an increase of 0.40‐0.60 mg/g berry, between the third and fourth date of 
September. The differential spatial‐temporal pattern of accumulation between TSS and anthocyanins, 
which are primary and secondary metabolites, respectively, has been successfully revealed by the use of 
HSI on‐the‐go in junction with a powerful deep learning method, such as the CNNs.    
The methodology developed in this work could also be deployed in specific, human‐driven, other 
common agricultural machinery (also concurrently during tilling or mowing operations) or even on 
agricultural robots. It could even be feasible to integrate HSI sensors, GPS monitoring and computing 
into a single platform capable of performing real‐time assessment in the vineyard, making use of 
powerful data analysis algorithms, (e.g. the CNNs) as it has been shown in recent studies (Sandino et al. 
2018, Gutiérrez et al. 2019).  
 
4. Conclusions 
The obtained results evidenced the potential of hyperspectral imaging acquired on‐the‐go, in 
combination with the convolutional neural networks, for the non‐destructive, robust and massive 
assessment of TSS, pH, titratable acidity and total anthocyanin contents in grape berries in the vineyard.  
HIS may become a useful tool for decision‐making regarding harvest scheduling and selection as well as 
berry fate for winemaking. 
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Figure 1. Regression plots for the external validation or prediction for the grape berry (A) Total soluble solids (TSS), 
and (B) the anthocyanin concentrations models, developed using hyperspectral imaging acquired on‐the‐go and 
convolutional neural networks (CNNs) in years 2017 and 2018 in two different commercial Tempranillo vineyards 
(Sites #1 and #2). Dark red line (A) and blue line (B) refer to the regression lines of the samples and the black solid 
line represents the 1:1 trend in both plots.  

Figure 2. Regression plots for the external validation or prediction for the grape berry (A) pH, and (B) titratable 
acidity models, developed using hyperspectral imaging acquired on‐the‐go and convolutional neural networks 
(CNNs) in year 2018 in a commercial Tempranillo vineyard (site #2). Orange line (A) and green line (B) refer to the 
regression lines of the samples and the black solid line represents the 1:1 trend in both plots. 

 




