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Abstract 
 
Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments 
on Chilean Cabernet Sauvignon, and ii) develop machine learning models to predict its quality.  
 

Methods and Results: 100 vineyard plots representing the typical percentage distribution of geographical and 
viticulture impact factors on Chilean Cabernet Sauvignon were monitored across two seasons, 2018 and 2019. 
Chemical analysis of grapes and wines included the quantification of phenolic compounds by liquid 
chromatography and UV-vis spectral measurements, aroma compounds by gas chromatography mass 
spectrometry (GC/MS), and maturity parameters. Spearman correlation and Principal component analysis (PCA) 
identified correlations of several non-volatile and volatile compounds with quality, mainly by means of their 
anthocyanins, flavonols, flavan-3-ols, total tannins and hydroxycinnamic acids. Furthermore by trans-2-hexenol, 
trans-3-hexenol, hexanal, 2-isobutyl-3-methoxypyrazine (IBMP), yeast assimilable nitrogen (YAN), total soluble 
solids and acidity. Experimental winemaking of 600 kg per plot followed a standardized procedure, and the wines 
were analyzed by an expert quality rating. A sensory quality profiling for the wines was performed through a 
Napping Ultra Flash Profile (UFP). It revealed the distinction of three different quality levels by mainly mouthfeel 
attributes, and fruity and green aromas. However, neither the observed correlations of chemical analysis and 
sensory quality ratings, nor origin or viticulture treatment could fully explain quality. Different clustering 
methods, namely k-means, k-medioids and spectral clustering were evaluated in order to find categories given 
by the chemical analysis data itself as unsupervised machine learning. Spectral clustering led to optimum results, 
and independently of sample origin and viticulture traits, quality ratings were characterized to be significantly 
different across the clusters allowing their interpretation as quality categories.  
 

Conclusions: Chilean Cabernet Sauvignon quality is associated with chemical quality markers known for this 
variety in Australia and California, including phenolic compounds, C6 alcohols and aldehydes, IBMP, maturity 
parameters and YAN. However, evaluation of sensory quality is fairly subjective and viticulture treatments in 
practical application contain interdependency, therefore it is challenging to establish supervised models 
involving this data. The application of unsupervised spectral clustering is proposed as an objective quality 
classification approach, which can be trained using supervised models for predictive purposes. 
 

Significance and Impact of the Study: There is a high industrial need for objective quality classification. For the 
first time chemical quality markers for Chilean Cabernet Sauvignon were determined, and an unsupervised 
machine learning approach based on these markers could be proposed for objective quality classification.  
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Introduction 
 

Wine quality and style are associated with geographical origin, climate and viticulture management, also 
understood as the concept of terroir (Leeuwen and Seguin, 2006). The understanding of wine quality, however, 
is complex and it highly depends on personal conception and experience (Charters and Pettigrew, 2007; Hopfer 
et al., 2015; Hopfer and Heymann, 2014).  
 

Wide parts of the Chilean Central Valley, located between the Andes and the Coastal Ranges, are used for 
winegrowing purposes. Chile can be divided into 18 main valleys, where Cabernet Sauvignon is typically 
cultivated in eight of these valleys between 30°41' SL in Limarí valley in the north, and 36°39' SL Itata valley in 
the south. The single valleys within the Central Valley are influenced by their location according to longitude 
which impacts temperature and radiation, and also by latitude that provides differences in precipitation and 
temperature by the impact of the Pacific Ocean and the Andes Cordillera (Rojas and Ugarte, 2016). Within these 
given environmental conditions, vineyard management is an important impact factor. In its entirety it can 
influence yield, photosynthesis, and total productivity of plant primary and secondary metabolites. Plant material 
including rootstock and scion, and their interactions, determine the exchange between environment, soil and 
the vine, and therein can influence vine physiology like shoot density, vigor, fruit yield and fruit composition 
(Sabbatini and Howell, 2013). Rootstock and nutrition uptake, depending on both factors, are also highly related 
(Lambert et al., 2008). Trellis system and its management manipulate the appearance of the vine, which is an 
important influencing factor on the leaf area index, total light interception, vine balance, cluster light interception 
and total cluster microclimate, among others (Reynolds and Vanden Heuvel, 2009).  
 

The sum and interactions of these cultivation conditions, associated with the concept of terroir, result in certain 
optimum or non-optimum conditions for the vine, which impact the chemical grape composition, and the 
sensorial properties of the later produced wines (Forde et al., 2011; Leeuwen and Seguin, 2006; Robinson et al., 
2014). This raises two main questions: i) the characterization of representative geographical and viticulture data 
to understand these complex and interacting factors, and ii) the evaluation of grape and wine chemical 
composition to find the link between chemical composition and sensory properties, and also to translate this 
information into wine quality prediction based on grape composition. Cabernet Sauvignon composition is 
generally complex, and among all these compounds previous research has identified a variety of chemical 
compounds as quality discriminant chemical markers for Cabernet Sauvignon in Australia (Bindon et al., 2020; 
Niimi et al., 2020) and California, USA (Cleary et al., 2015). These markers included pH, nitrogen compounds, 
polyphenols including anthocyanins and polymeric tannins, various volatiles including C6 alcohols and aldehydes, 
2-isobutyl-3-methoxypyrazine (IBMP), and terpenoids and their precursors. In the previously cited studies, these 
compounds were significantly correlated with a positive or negative contribution to wine aroma quality, noting 
these could still not to a full extent explain sensory wine quality classification, and the interactions are still not 
completely understood.  
 

The aim of this work therefore was to first study the impact of geographical origin and viticulture on Chilean 
Cabernet Sauvignon chemical composition and quality. Second, machine learning models were investigated with 
the purpose of an objective quality classification. As a new approach, spectral clustering was applied on the 
chemical data as an unsupervised approach aiming the interpretation as quality categories. 
 
Materials and Methods 
 
Cabernet Sauvignon from 100 vineyard plots owned by Viña Concha y Toro (VCT) in Chile was sampled during 
the 2018 and 2019 seasons with annual duplicates for 90% of the samples. Included parameters were 
geographical origin (valley, climate), plant material and vineyard management at the level of rootstocks, scion, 
trellis system, and yield. Grapes were assigned according to their commercial classification (Table 1). 
 

At harvest, yield was determined for each plot, and for grape analysis 50 bunches were randomly picked and 
bunch weight, number of berries per bunch and berry weight were measured. The berries were crushed and a 
sample was stored at -20 °C till further analysis. Before analysis, grapes were thawed overnight in the fridge, and 
samples were ground for 30 seconds with an Ultra Turrax T25 (Ika, Staufen, Germany). Winemaking took place 
in the CRI experimental winery, with a standardized procedure using approx. 600 kg of grapes. All samples were 
adjusted to 23.5 °Brix, and pH 3.5, maceration time was five days, alcoholic fermentation (AF) was terminated at 
residual sugar of < 2 g, malolactic fermentation (MF) at < 0.2 g/L malic acid, and SO2 was adjusted to 35 mg/L. 
Wines were filtered (Nexis A, Pall, New York, USA), controlled for nephelometric turbidity units (NTU, < 20, 
turbidity meter 2100Qis, Hach, Loveland, USA), O2 (< 1mg/L, multimetro HQ30d, Hach, Loveland, USA) and CO2 

https://paperpile.com/c/XGNAnt/i8PW+npuE+4IyH
https://paperpile.com/c/XGNAnt/i8PW+npuE+4IyH
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(< 800 mg/L, decarbonisation, equipment LMS, Brigachtal, Germany), bottled in 0.75L green glass bottles 
(sanitized with ozone, inert N2) with screw caps, and stored at 12 °C. 
 

Table 1: Geographical origin and viticulture impact factors, with number of samples for harvest year 
2018/2019, or b determined range in 2018-2019. a Reference Giraldo Olmos, 2017. 
 

Valley 
Aconcagua (1/1), Cachapoal (14/12), Colchagua (26/32), Curicó (8/7), Itata (1/1), 
Limarí (2/2), Maipo (16/18), Maule (32/31) 

Climatic indices a 
(accumulated) 

photometric index (iftta), Richardson cold units (uRa), cold hours (hfa), cold stress 
hours (efa, <10°C), photosynthetic active hours (hepa, 10-30°C), heat stress hours 
(sta, >30°C), precipitation total (pac), degrees total (dga) 

Scion 
169 (1/1), 170 (0/1), 191 (4/3), 337 (11/13), 341 (6/6), 412 (0/1), 685 (0/1), 46C 
(2/8), massal selection 1 (2/2), massal selection 2 (72/66), R5 (2/2) 

Rootstock 
101-14 (6/7), 110R (1/3), 3309C (4/4), 5BB (2/2), Own-rooted (80/82), gravesac 
(1/0), Paulsen (1/1), SO4 (5/5) 

Trellis system 
Cruceta (3/2), Geneva doble curtain, GDC (1/1), Lyre (1/0), Minimal pruning (10/8), 
Pergola (26/30), Vertical shoot position, VSP (59/63) 

Yield (t/ha) 0 ≥ 10 (19/28), 10 ≥ 20 (37/38), 20 ≥ 30 (27/22), 30 ≥ 40 (12/9), ≥ 40 (5/7) 

Berry weight (g) b 0.38 - 1.59 

Year of planting b 1904-2015 

Commercial 
classification 

Standard (low to high): S3 (30/28), S2 (20/23), S1 (0/0)  
Premium (low to high): P3 (36/38), P2 (10/11), P1 (4/4) 

 

Grapes and wines were subjected to chemical analysis (Table 2). Basic analyses were measured enzymatically 
with Analyzer Y15 (Biosystems, Food Quality, Barcelona, Spain). Total phenolic compounds were analyzed by UV-
vis spectroscopy (Cary 60, Agilent Technologies Santa Clara, USA). Anthocyanins, flavan-3-ols, flavonols and 
hydroxycinnamic acids were analyzed by HPLC-DAD (1290 Infinitely Series, oven 1290 TCC G1316C, 1260 DAD 
G4212B, Agilent Technologies Santa Clara, USA). Grape derived volatiles were analyzed by GC-MS (7890B GC 
oven, 7000C Triple Quad, 7693 ALS CombiPal 7697A, Agilent Technologies Santa Clara, USA).  
 

Sensory quality profiling with a subset of 10 experimental wines of 2019 was done in replication with a panel of 
enologists of VCT (2 female, 14 male, 27-60 years) by Napping UFP based on Pagès, 2005. Napping was for global 
quality, and UFP asked to provide the assignation to quality level low, medium or high, and up to five descriptive 
attributes. Quality evaluation of all wines was independent ratings of overall quality, mouthfeel quality and 
aromatic quality on a structured scale between 1 (low) to 9 (high) by the same panel. 
 

Data analyses were done using Add-in XLSTAT (version 2020. 3.17, Addinsoft, Paris, France) in Excel 2010 
(Microsoft, Redmond, USA), and with the software R (R, 2013) which was used with different packages including 
FactoMineR package (Le et al., 2008), SensomineR package (Le and Husson, 2008), cluster packages by Maechler 
et al. (2019) and by Kawa (2018). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://paperpile.com/c/XGNAnt/DF6S
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Table 2: Chemical measurements of grapes and wines, partially only measured in a grape or b wine. 
Abbreviations: Gl: glycosid/glycosylated, Ac: acetylated, Cum: cumarylated, Gal: galactoside, Ac: acid.  
 

Basic analysis 
Total acidity, pH, Malic acid a, Total Soluble Solids (°Brix) a, Yeast Assimilable 
Nitrogen (YAN) a, °Ethanol b, volatile acidity b, residual sugar b 

Phenolic compounds  

Total Phenols Index (OD280), Color Index (OD420+OD520+OD620), Tannins 
(methyl cellulose precipitable, MCP), Anthocyanins (Decoloration SO2), 
Polymeric Pigments, Tannins, Phenols, Non Tannin Phenols, Anthocyanins (all 
Adams-Harbertson method) 

Anthocyanins 
Delphinidin-3-O-Gl, Cyanidin-3-O-Gl, Petunidin-3-O-Gl, Peonidin-3-O-Gl, 
Mavidin-3-O-Gl, Peonidin-3-O-Ac-Gl, Malvidin-3-O-Ac-Gl, Peonidin-3-O-Cum-
Gl, Malvidin-3-O-Cum-Gl 

Flavan-3-ols Catechin, Epicatechin, Epicatechin-Gallate 

Flavonols 
Myricetin 3-O-Gal, Myricetin 3-0-Gl, Myricetin, Rutin, Hyperoside, Quercetin 
3-0-Gl, Quercetin, Laricitin Hex., Siringin 3-Gal, Sirigin 3-Gl, Kaempferol 

Hydroxycinnamic acids Caftaric Ac., Caffeic Ac., Coumaric Ac.  

Grape derived volatile 
compounds 

Hexanal, Trans-2-Hexenol, Cis-3-Hexenol, 
Trans-3-Hexenol, 1,4-Cineole, 1,8-Cineole, Linalol, α-Terpineol, Citronellol, 
Nerol, Geraniol, β-Damascenone 
β-Ionone, 3-Isobutyl-2-methoxypyrazine (IBMP) 

 
Results and Discussion 
 
Origin and Viticulture Impact on Chemical Composition  
Harvest year impacted all chemical measurements, as pairwise RV coefficients were below 0.3 for all compounds 
including harvest parameters. This could be aligned by normalization of the results; Robert and Escoufier, 1976). 
PCA of the 2018 and 2019 normalized grape data revealed a negative correlation of polyphenolic compounds 
including flavan-3-ols, flavonols, hydroxycinnamic acids, anthocyanins and tannins (by HPLC and UV-vis), °Brix 
and pH against volatile compounds including IBMP, trans-2-hexenol, trans-3-hexenol, hexanal, acidity and YAN 
by principal component (PC) 1 for grapes (figure 1, 30.2%). By PC 2 (8.5%), few individual samples were 
furthermore separated due to terpenoids including alpha-terpineol, beta-damascenone, and cineole. The results 
for wines were consistent with these findings, only ethanol added to the correlation on the polyphenols side, 
furthermore the impact of volatiles was increasing, while it was decreasing for hydroxycinnamic acids (not 
shown). The commercial quality classification was associated with the chemical measurements, and premium 
samples were to a large extent projected with the phenolic compounds, and standard samples vice versa. 
However, especially the medium part was characterized by superposition of premium and standard classification, 
and considerable numbers of outliers were observed. As the decision about commercial classification is made 
based on viticulture data and experience of agricultural engineers, an objective classification based on chemical 
measurements is considered to improve the results. However, the observed association of measurements and 
quality was in accordance with previous investigations that had aimed to define quality markers for Cabernet 
Sauvignon in Australia and California (Bindon et al., 2020; Niimi et al., 2020, Cleary et al., 2015). The discussed 
chemical compounds were hereupon considered as representative for Chilean Cabernet Sauvignon. 
 

Regarding geographical and viticulture determinants, coldness (hfa, efa, uRa) and precipitation (pac) were 
associated with valleys located more in the south, that are naturally characterized by colder and rainier climate 
compared to other wine producing regions. This included Maule, Itata, and Curico (Figure 1). Consequently these 
valleys were also correlated with more photosynthesis productive hours between 10-30°C (hepa). Heat (dga, sta) 
vice versa, was associated with valleys of the north that overpass 30 °C regularly, including Maipo, Aconcagua 
and Colchagua. Regarding the geographic influence on the chemical measurements, C6 alcohols and aldehydes, 
and IBMP were associated with the colder regions, and terpenoids and polyphenolic compounds with warmer 
regions. However, the existing interdependence with viticulture impact factors complicated the interpretation. 
Maule valley, as an example, was completely committed to the application of trellis system VSP, aiming to 
produce high quality wines. VSP, due to its application, is associated with low yield, and smaller grape berries, 
which has an impact on chemical composition (Forde et al., 2011). Furthermore, viticulture factors were difficult 
to assess. VSP and pergola were widely used, and could be associated with yield and berry size (low for VSP, high 
for pergola), but due to its particular distribution no further conclusions could be drawn from the plant material. 
 

https://paperpile.com/c/XGNAnt/mkjQu
https://paperpile.com/c/XGNAnt/rRqI
https://paperpile.com/c/XGNAnt/pQbQ
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Sensory Quality and Correlation with Chemical Measurements 
Napping UFP revealed diverse and partially very subjective attributes associated with quality by the enologist 
panel, which had been expected as quality evaluation underlies subjectivity even for experts (Hopfer and 
Heymann, 2014). However, filtering attributes by three or more panelists, mainly very personal descriptions 
(usable, green touch, good potential, etc.), synonyms and redundancy were removed. A Spearman correlation 
revealed distinction correlations of the quality levels low, medium and high, in which the panelists did have a 
consensus. Positively correlated were red, black, ripe and fresh fruits (fruity aromas) together with mouthfeel 
descriptors including full body, juiciness, fat, concentrated and softness, while attributes expressing vegetal, bell 
pepper, grassy (green aromas) and dryness, tannins, bitterness or watery were negatively correlated (not 
shown).  
 

The ratings of global, mouthfeel and aromatic quality were then correlated (Spearman) with the chemical 
measurements (Figure 2). From the grape data, the highest correlations with wine global quality were found for 
maturity parameters °Brix (0.42), pH (0.42), and acidity (-0.52). IBMP negatively influenced global and aromatic 
quality (-0.41, and -0.55, respectively). Flavan-3-ols and tannins were positively correlated, including epicatechin 
(0.25). From the wine data, ethanol (0.41) and IBMP (-0.49) were found to have the greatest impact on global 
quality. Furthermore, flavonols were widely positively, and volatiles including hexenols and terpenoids negatively 
correlated. However, the observed correlations between sensorial data and the most chemical markers were 
fairly low, and less specific for individual compounds. This was presumably due to the sensory data, because 
although a certain consensus was found among the panelists the evaluation of quality is subjective, and the 
practical working environment of a winery is challenging for detailed analysis (high numbers of samples, lacking 
availability of panelists). Single sensory descriptors have been shown to highly correlate with chemical 
measurements (Niimi et al., 2020), however, based on the actual dataset a classification on the chemical markers 
was aspired. 
 
 

 
Figure 1: PCA projection of normalized grape chemical measurements, origin and viticulture data (2018 and 
2019). Highlighted origin valley (large figure), and commercial classification (S standard, P premium, small figure). 
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Figure 2: Spearman correlation of global (G), mouthfeel (M) and aromatic (a) quality ratings with markers 
(2019). 
 
Unsupervised Machine Learning Clustering Models Based on Chemical Measurements 
Spectral clustering consists of a graph-based clustering algorithm that calculates the eigen-value decomposition 
(EVD) on the normalized Laplacian matrix of the data. For the purposes of this study, eigenvector picking was 
settled to the corresponding eigen-vectors of the smallest two non-zero eigen-values ignoring the trivial constant 
eigen-vector (Hastie et al., 2013). In order to get the optimal number of clusters, average silhouette method was 
applied (Charrad et al., 2014). The spectral clustering of the 2018 and 2019 normalized grape and wine chemical 
measurements resulted in six and four clusters, respectively. ANOVA and Tukey's test of samples that belonged 
to each cluster revealed the significant drivers for the cluster formation. These were mainly non-volatile phenolic 
compounds, including anthocyanins, flavonols, flavanols, and hydroxycinnamic acids measured by HPLC, MCP 
tannins, °Brix, acids, YAN and IBMP for grapes. For wines they were again phenolic compounds, and additionally 
volatiles were seen to have a more significant impact on the cluster formation, including IBMP, trans-2-hexenol, 
trans-3-hexenol and hexenal, while monoterpenes and C13-norisoprenoids were without significant impact (not 
shown). So far, the use of the shown main drivers for Cabernet Sauvignon quality was sufficient to cluster the 
datasets, and for future analysis it could be considered to include further compounds that have been shown to 
be markers like amino acids, or esters (Bindon et al., 2020).  
 

Subsequently, the obtained wine cluster model (four clusters) was interpreted with the sensory quality ratings. 
As a semi-supervised approach, the sensory data available for 2019 was applied on the normalized clusters of 
the 2018 and 2019 harvest. The clusters had been characterized by decreasing concentrations of phenolic 
compounds, and increasing concentrations of volatile C6 compounds and IBMP across the clusters one to four 
(C1-C4, figure 3). Although the differences were fairly low, the quality ratings were consistently decreasing from 
cluster one to four, with the exception of mouthfeel which was found to be lowest in cluster two. Interestingly, 
apart from other phenolic compounds, cluster two had been characterized by outstanding concentrations of 
tannins and flavan-3-ols that might have led to the lower rating of mouthfeel quality. In general, polyphenolic 
compounds contribute to mouthfeel sensations, and have been shown to impact the perception of quality 
(Gawel et al., 2007; Sáenz-Navajas et al., 2011). Mouthfeel descriptors were furthermore highly correlated to 
quality in the Napping UFP, and volume and astringency were evaluated positively while dryness and tannins 
were negatively correlated. However, the decreasing rating of aroma quality was presumably associated with 
the increase of volatile compounds including trans-2-hexanol, trans-3-hexenol, hexanal and IBMP. These volatile 
compounds evoke the perception of green aromas (Francis and Newton, 2005; Noble et al., 1995), and these 
green attributes had also been profiled to represent low quality. For this model, the clusters one and four could 
be applied as four quality categories. As an example, the currently used commercial classification leads to 
considerable numbers of misclassifications and an improvement can be expected from the spectral clustering 
prediction (Figure 1 and Figure 3). 

https://paperpile.com/c/XGNAnt/b8uA1
https://paperpile.com/c/XGNAnt/wwe8
https://paperpile.com/c/XGNAnt/iclyo+iDZBl
https://paperpile.com/c/XGNAnt/DrSk+fjXY
https://paperpile.com/c/XGNAnt/aJQD
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Figure 3: Spectral clustering of normalized wine chemical measurements 2018/2019, and characterization of 
the 4 obtained clusters sensory quality evaluation and commercial classification. C Cluster, S Standard, P 
Premium. 

 
Conclusions 
 
With this study and to the best of our knowledge for the first time chemical quality markers for Chilean Cabernet 
Sauvignon were determined. However, the complexity and interdependence of all external impact factors, 
associated with the terroir of a vineyard plot, complicate quality prediction of grapes to produce wines of a 
certain quality or style in the practical working environment of a winery. Sensory quality assessment, although 
profiled for a general consensus with the evaluating enologist panel, contains subjectivity. To enable objective 
quality assessment, spectral clustering was applied as unsupervised machine learning including only chemical 
measurements. The grapes and wines were clustered by the chemical markers known to be main drivers for 
Cabernet Sauvignon quality, but the advantage, and innovation of spectral clustering is that through the cluster 
formation the method provides fixed categories from chemical data. The use of the sensorial data to characterize 
the obtained clusters allows their interpretation as quality categories. In conclusion, spectral clustering is 
proposed as a powerful method for objective quality classification, suitable for practical application with complex 
entrance and output variables. 
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