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Abstract: A new framework for the segmentation and characterization of row crops on remote sensing images has been 

developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing 

images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a 

vegetation index such as NDVI along each row of a parcel. 

The framework consists in several steps. First, the segmentation step allows the delineation of the parcel under 

consideration. A region-growing algorithm, based on the textural properties of row crops, was developed for this 

purpose. Once the parcel under consideration is delineated, a boundary smoothing process is applied and the row 

detection process begins. Row detection operates by means of an active contour model based on a network of parallel 

lines. The last step is the design of vegetative vigor maps. Row vigor is computed using pixels neighboring the lines of 

the network. Once row vigor is obtained on the rows, 2D vigor-maps are constructed. The values measured on the row 

are propagated to the inter-row pixels, producing «continuous» vigor maps ready to be exported to a GIS software. 

We successfully exercised our framework on vineyard images. The resulting parcel segmentations and row detections 

were accurate and the overall computational time was acceptable. 
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Introduction 

High-resolution remote sensing imagery is becoming a reality in the context of Precision Agriculture. In the 

future, it will be an essential tool for site-specific crop management and will help in the global knowledge of 

land use and quality control. Precision agriculture technologies and more particularly remote sensing 

imagery are expected to provide detailed maps of the crops. Such maps, which can be frequently updated, 

will enable the determination of management zones within the fields [1][2].  

Applied to row crops such as vines, precision agriculture concepts imply that the field can no longer be 

considered as a whole. Each row should be processed separately and inter-rows, which often consist of bare 

soil or grass, should be considered separately. Very high-resolution images are then necessary to attain 

accurate row discrimination and characterization.  

Considering the particular spatial arrangement of row crops, the design of management maps requires the 

following steps: image acquisition, field delineation, row detection and row processing. The results can then 

be integrated into a Geographic Information System (GIS). In this paper, we describe a complete framework, 

from image acquisition to row processing, and we apply it to the computation of vigor maps for vine parcels. 

Material and Methods 

Acquisition methods and images 

Our study is carried out on very high-resolution remote sensing images taken from a plane. Pixel resolution 

is about 0.10 m. The available data (figure 1) are either color or multi-spectral images of several vineyards in 



VI
e
 Congrès International des Terroirs Viticoles 2006 - VIth International Terroir Congress 2006 

 

 

 
©Enita 2006 244 

the Bordeaux area, taken during the 2002 to 2003 and 2004 growing seasons i.e. from April through August. 

The methods described in this paper  

apply to grey level images, obtained from a single 

spectral band or from some combination of several 

spectral bands. For instance, the Normalized Difference 

Vegetation Index (NDVI) or the Ratio Vegetation Index 

(RVI), widely used in agricultural engineering, are 

meaningful measures of plant vigor [3][4][5]. The choice 

of the appropriate combination depends on the context 

and is not addressed here.  

Parcel delineation 

The segmentation algorithm for parcel delineation is 

derived from region-growing methods [6][7]. It relies on 

the specificity of the observed texture. Indeed, the spatial 

layout of row crops shows a strong anisotropy. 

 
Figure 1 – Typical high-resolution vineyard 

remote sensing image 

The segmentation is carried out by a region-growing algorithm based on anisotropy features. Region growing 

methods is suited to the delineation of a unique region but requires some supervision from the operator. We 

consider this basic task to be acceptable and entrust it to the end-user. 

The aggregation proceeds in the four steps hereafter.  

Reference region selection and feature computation – In order to characterize the row crop texture, we 

choose a textural feature based on local orientation. The orientation is associated with a confidence index 

related to texture anisotropy. The computation of the textural feature is carried out as follows : 

- Computation of the local orientation and the anisotropy index – These attributes are computed for each 

pixel of the image. For this purpose, we use the « adaptive framework for unbiased orientation 

estimation » described in [8]. 

- Manual selection of a rectangular area inside the parcel under consideration – The reference rectangle 

constitutes the seed of the region-growing algorithm. 

- Computation of the Directional Mean Vector Vref in the reference region – This vector [9] gives us both 

the orientation of the plot and its anisotropy. 

Coarse aggregation stage – Pixels surrounding the reference region are iteratively processed and aggregated 

if they belong to the parcel. The decision of aggregating a pixel p to the reference region is taken on the basis 

of the inner product of its feature vector V(p) by the reference feature vector Vref: The pixel p is aggregated if 

the inner product is greater than a given threshold dth.  

The objective of the coarse aggregation stage is to aggregate many pixels as fast as possible. To do so, small 

windows W around the reference region Wref are analyzed by computing the window feature vector and by 

comparing it to the reference vector Vref. If the inner product is greater than the threshold dth then all the 

pixels inside W are aggregated simultaneously. 

Fine aggregation stage – After coarse aggregation, pixels at the border of the parcel are examined one by 

one. We use the same threshold value dth. If the inner product is lower than the threshold, the pixel is added 

to the parcel. This process is carried out for all neighboring pixels until aggregation is no longer possible. 

Boundary smoothing – When a pixel p is at the border between the parcel under consideration and a path, 

the observation window W(p) combines both rows and noisy structure-less paths. This local layout may 

produce an irregular feature vector V(p) and the inner product between V(p) and Vref may be below the 

threshold. This leads to an irregular border. To get smoother borders and to fill the holes that may appear 

inside the parcel, a morphological closing is processed. 
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Figure 2 - The three basic segmentation steps: choice of a reference, coarse aggregation and fine aggregation. 

Row detection 

Most computer vision methods for detecting crop rows are implemented in real-time systems for automatic 

guidance of agricultural implements [10][11] where, for computational reasons, segmentation of crop/weed 

pixels is usually avoided. Some authors carry out the row detection using a simple thresholding [1]. 

Nevertheless, the choice of a threshold is awkward, especially when grass is present between rows. 

Contrary to the real-time context, computational time is not a critical issue for precise location of rows in 

crop monitoring. In contrast, row position and angle estimations have to be very precise. The specific 

arrangement of individual crops suggests the use of the Hough transform (e.g. [10][12]). However, previous 

attempts, not reported in this paper, have shown that some limitations of the Hough transform because of the 

large number of linear structures and the presence of undesirable alignments. 

In order to retrieve the rows with high accuracy, we implement an active contour network, which aims at 

fitting a line to each row through a global convergence process. Such a network has already been used in 

[14] where it was applied to an image completely covered by vines. We propose here to generalize this 

approach to any image showing a vineyard segmented from its neighborhood. 

Definition of an active contour model or snake – A snake is a geometric object whose features can evolve 

over time [15]. Rigid models composed of predefined shapes are more suited to our application. Only their 

orientation and position can move to a stable state, while respecting a given set of constraints. The stable 

state corresponds to the minimum of a pre-defined energy E: 
ext

EEE )1(int μμ +=  

The internal energy Eint reflects the internal constraints that the snake undergoes. The external energy Eext 

takes into account the effect of the image on the snake. μ [0,1] is a weighting parameter. The evolution of 

the snake is an iterative process. The snake stops moving when the minimum of the energy is reached. 

Choice of the model – The most appropriate model is a network of quasi-

parallel segments. Each segment Si is completely defined by the two 

parameters i and Pi=(xi,yi) (fig. 3). Pi is the pivot around which Si rotates. 

During the evolution of the snake, the positions and the orientations change 

until the energy of the snake reaches a minimum. 

Initialization of the snake – The segments have to be located as close to the 

underlying rows as possible.  

 
Figure 3 - Pivot Pi  

and orientation i 

Good approximations of row orientation and spacing can be obtained by 

spectral methods. Since we already know the global orientation of the rows, 

thanks to the delineation step, the row spacing is all that is left to estimate. In 

order to do so, the image is rotated to the horizontal. Then the grey levels of 

the pixels are projected horizontally to produce a 1-D signal. On this signal, 

we compute a 1-D Fast Fourier Transform (FFT). The maximum of the power 

spectrum provides with the mean row spacing.  

Before starting the iterative process, the rough orientation, previously obtained 

thanks to the Directional Mean Vector, and the mean spacing measured on the 

power spectrum are used to fix the location of the segments on the rotated 

image. Pivots are placed on a vertical line that intersects the largest number of 

rows. Hereafter, the method consists in finding all the minima of the 

luminance along that line.  

 

 
Figure 4 - Vertical line 

orthogonal to a maximum 

number of rows 

Convergence of the snake – The iterative convergence algorithm, described in [14] carries out the 

minimization of the energy, E. The external energy Eext models the attraction of the segments by the rows. It 

must be minimal when the segments are close to the rows. As the rows are characterized by a weak 

luminance, we define Eext as the integral of the luminance along the segments. The internal energy Eint 

enables the control of the snake shape. It is composed of two parts Ex and E . Ex maintains a regular spacing 

between segments while E  ensures a regular angle between segments.  
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Results 

We present here the results obtained at each step of the framework for the image in (fig. 1). Hereafter, we 

will propose some approaches to the use of these results for cartography. 

Segmentation step  and row detection step 

The window aggregation step provides us with a rough estimation of the field shape. It also shows some 

difficulties concerning regions of the field that differ from the reference region: for instance, the upper left 

area, which suffers from low vegetative vigor, is left out after the coarse aggregation step. The pixel 

aggregation step refines the boundaries, and the post segmentation processing fills the holes and smoothes 

the sharpest variations along the edges. The segmentation result is accurate as shown in (fig. 5). 

As described previously, the image is rotated before the row detection step so that the line network appears 

horizontally. The initialization stage performs well. Pivots are placed correctly in spite of the absence of 

foliage in some locus. After convergence of the active network, the lines fit almost perfectly the central axis 

of the vine rows (fig. 6) overcoming the irregularity of foliage and the absence of vine plants. 

 

 
Figure 5 - The four-steps segmentation process 

 
Figure 6 - Details of the row detection step. 

Row feature computation  

The active contour model makes it possible to take measurements along crop rows and to assign the 

measured feature to a precise locus on the row. The feature to be measured will depend on the type of crop 

and on the type of information needed by the end-user. In the case of vineyards, it may be useful to 

characterize the vine canopy by measuring its width (or any vegetative index) along vine rows. In all cases, 

the measured index must be assigned to a particular vine plant on the row.  

The grey level profile along a line orthogonal to the vine rows shows an alternation between dark pixels 

corresponding to foliage and light pixels corresponding to soil. In order to produce a vegetative index V(i,j) 
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for a given locus (i,j) on the vine row, we propose to simply invert the data, to sum the inverted pixel values 

vertically around the considered locus and to assign the final value to the pixel on the row. 

 

Note that V(i,j) may take into account both vine and non-vine 

pixels in the event of missing plants. Non-vine pixels may thus 

have an influence on V(i,j). When working with the NDVI index, 

this influence is reduced since soil pixels have very low NDVI 

values. Figure 7 shows an extract of the vegetative index map, 

with values computed only on row pixels. 

Continuous map design 

At this stage, the computed vegetative index is assigned only to 

the pixels located on the lines of the network. Despite the fact 

that it accurately depicts vine behavior, the discontinuity of this 

map makes it inappropriate for visualization purposes (see fig. 7). 

The conversion of this discontinuous vegetative index map into a 

continuous 2-D map can be carried out either by using a 2-D 

interpolation or by the duplicating the vegetative index values 

from the lines of the network to the inter-rows. In the case of 2-D 

interpolations, the krieging function of a GIS could fulfill this 

task. 

However, we propose here to produce a continuous vegetative 

index map. For this purpose, we carry out the propagation of the 

vegetative index between the lines of the network using a 2-D 

Deriche isotropic filter. The recursive implementation of this 

filter requires a low computational time [16]. Finally, the 

continuous vigor map is rotated back to the initial orientation of 

the vine parcel. The result is shown on figure 8. The palette used 

shows missing plants in blue, the average vigor areas in yellow, 

and the most vigorous areas in orange. 

  
Figure 7 - Discontinuous vigor map 

 

 
Figure 8 - Continuous vigor map. 

Discussion 

Using our framework with high-resolution remote sensing images, discriminating row crops from non crop 

areas is possible. This framework should allows us to draw several maps revealing row crop characteristics, 

among which density, spacing, NDVI or biomass. It should be noted that our framework can be adapted to 

multi-spectral or hyper-spectral images, applying each step either on a single original wavelength or on a 

combination of several wavelengths such as the well known NDVI or RVI indices. 

In some cases, the automatic segmentation step might not be needed, especially when digital orthophotos are 

used together with field boundaries maps registered in a GIS. Otherwise, the segmentation step requires very 

low input from the end-user who just needs to draw a small rectangle inside the field he wants to survey 

rather than clicking on each vertex of the polygon surrounding the field. 

Considering computational time, Table 1 provides detailed results obtained on Fig. 6a (size 1829 1605). 

Algorithms were processed on an Intel Pentium M 2.0 Ghz with 1 Gbytes of memory. 

Orientation computation 02 s 

Automatic segmentation 31 s 

Rotations (direct and inverse) 03 s 

Row detection 04 s 

Computation of the vigor on row pixels < 1 s 

Inter-row filling 01 s 

Other 01 s 

Total 43 s 

Table 1 - Computational time for fig. 1 processed on an Intel Pentium M 2.0 Ghz with 1 Gbytes of RAM. 

 

Rotations, row detection and vigor map computation take only a few seconds. The automatic segmentation is 

the most time-consuming step. The cost of the segmentation step goes from 20 to 40 seconds, depending on 
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the surface to be segmented. This duration may seem too long and an improvement of the segmentation cost 

should be feasible. However, the automatic segmentations turns out to be often worthwhile compared to a 

manual delineation. The row detection and map drawing steps, take about 10 seconds altogether which is 

considerably shorter than clicking and identifying each row. 

Conclusion 

We have proposed a new framework for the segmentation and characterization of row crops using high-

resolution remote sensing images. More specifically, we have introduced new algorithms for parcel 

delineation and for row detection in the case of row crops.  

The segmentation relies on a region-growing algorithm based on a textural description of row crops. The 

coarse to fine scheme allows to detect parcel boundaries accurately. The row detection algorithm implements 

an active contour network which aims at placing lines on the very middle of the rows. The process consists 

in minimizing an appropriate energy function in order to converge quickly towards the optimal line network. 

The resulting lines are the basis for a robust estimation of a vegetative index. This index, computed along 

each line of the network, avoids taking into account the soil and grass pixels in the inter-rows.  

The last step consists in the propagation of values measured on lines, to inter-row pixels in order to obtain 

"continuous" maps of the row vigor.  

Our framework has been successfully applied to draw vigor maps of vine parcels. Such maps may help to 

split the parcel into differentiated management zones, and can even be compared with in-field measurements 

taken on soil or vines, e.g. yield, electro-resistivity, etc. 

Prospective work concerns the reduction of the processing time for the segmentation step and the 

implementation of a new network model taking into account row curvature in order to strengthen slope 

variation robustness. 
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