









# Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc -Roussillon region (south of France)

Hugo Fernandez-Mena<sup>1,2,\*</sup>, Nicolas Guilpart<sup>3</sup>, Philippe Lagacherie<sup>4</sup>, Renan Le Roux<sup>5</sup>, Mayeul Plaige<sup>1</sup>, Maxime Dumont<sup>1</sup>, Marine Gautier<sup>1</sup>, Jean-Marc Touzard<sup>6</sup>, Nina Graveline<sup>6</sup>, Hervé Hannin<sup>7</sup>, Christian Gary<sup>1</sup>

Affiliations :

Égalité

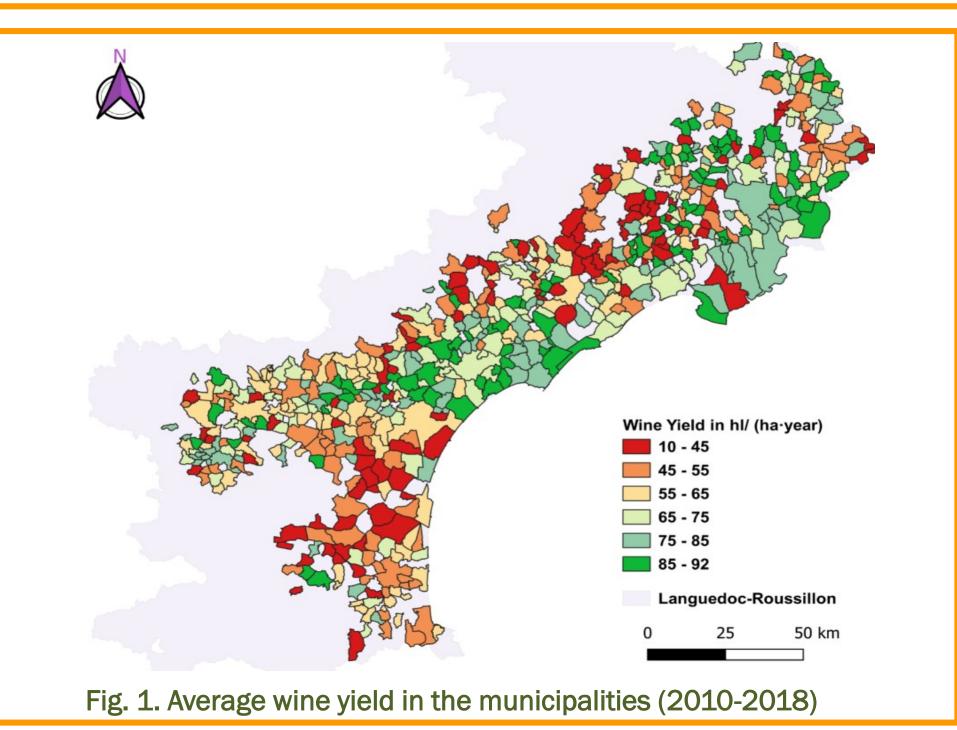
Fraternité

- 1. UMR ABSys INRAE; CIRAD; Institut Agro Montpellier, France 2. UMR EMMAH – INRAE; U. Avignon – Avignon, France
- 3. UMR Agronomie AgroParisTech ; INRAE; Université Paris-Saclay, France
- 4. UMR LISAH INRAE; CIRAD; IRD Montpellier, France
- 5. U. AgroClim INRAE Avignon, France
- 6. UMR Innovation INRAE; CIRAD; Institut Agro Montpellier, France 7. UMR MOISA – INRAE; CIRAD; Institut Agro – Montpellier, France

\* hugo.fernandez-mena@inrae.fr

# Context

In Languedoc-Roussillon region, many IGP Pays d'Oc producers are far from the label yield quality threshold, i.e. 90 wine hl-ha-1-year -1 for red and white wine. These yield-gaps are weakening the profitability and durability of many vineyards (Touzard et al., 2017). Yield-gaps at the regional level have been widely studied in arable crops, but very little in perennial crops, such as grapevine. Understanding environmental factors involved in yield-gaps, such as climate and soil limitations, is the first step for the grapevine yield-gap analysis. At the regional scale, numerous studies of the 'terroir' involved in wine quality exist. However, there have not been studies to classify environmental factors concerning grapevine yield-gaps yet.


## Data used



IGP Pays d'Oc label (~1100 cellars, ~80-120.000 ha, ~50% of Languedoc-Roussillon viticultural area)

96 667 individual yield data aggregated into 606 municipalities

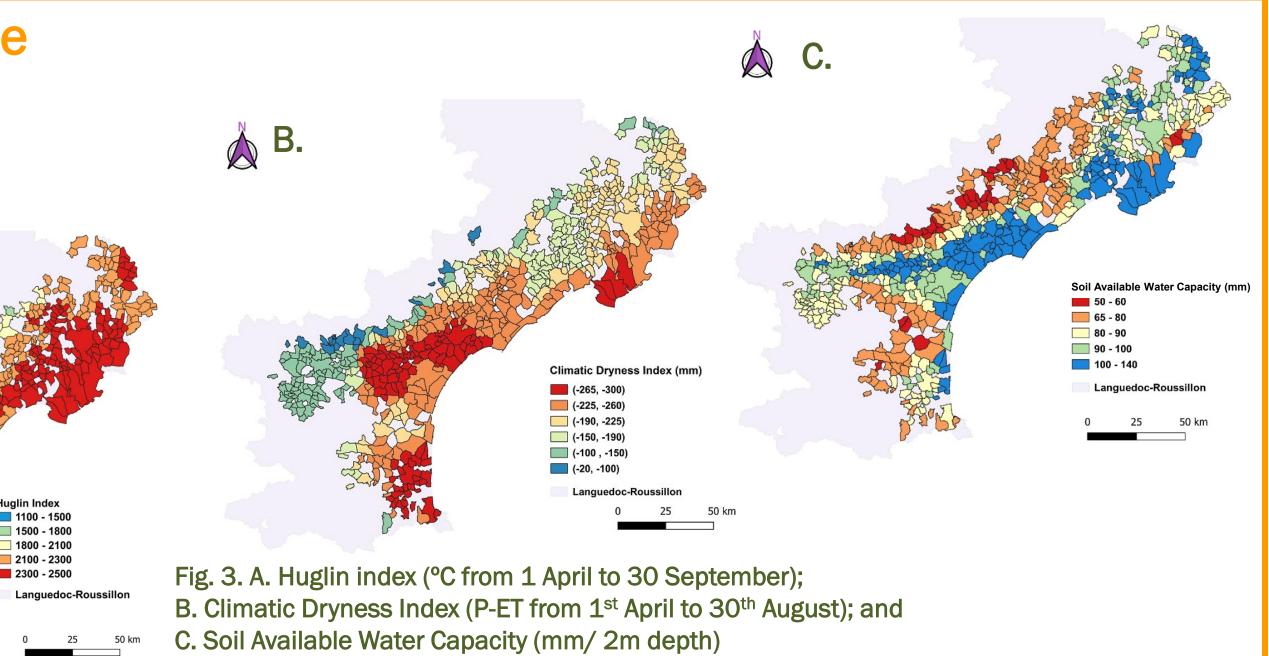
4 456 average yield in municipalities from 2010 to 2018



58 grapevine varieties

#### Climate Data 2.

MétéoFrance SAFRAN reanalysis with grids of 8km by 8km Extraction of Languedoc Roussillon region from 2010 to 2018


#### Soil data 3.

Soil Available Water Capacity (SAWC) regional map (Styc and Lagacherie, 2021) Soil pH GlobalSoilMap cartography regional map (Vaysse and Lagacherie, 2015)

## Selection of relevant soil and climate indicators at the municipality scale

We used a **backward stepwise model selection** process using **linear mixed-effects** models (with the 'nlme' R package) to discriminate and select the statistically significant indicators capable to estimate grapevine yield at the municipality scale.

| Huglin_Index           | •••••              | Indicator selected            | Units (units/year) |
|------------------------|--------------------|-------------------------------|--------------------|
| Soil_pH                | ······             | Soil Available Water Capacity | mm                 |
| Climatic_Dryness_Index | ······             | Soil pH                       | -                  |
| Frost_D                |                    | Climatic Dryness Index        | mm                 |
| Very_Hot_D             | o                  | Huglin Index                  | Degree Celsius     |
| Hot_D                  | 0                  | Days of Frost                 | days               |
| Sever_Heat             | 0                  | Very Hot Days                 | days               |
| Late_Frost             | ·····O             | Severity of Heat Stress       | Degree Celsius     |
| Sever_Frost            | 0                  |                               | •                  |
| l                      | 0 5000 15000 25000 |                               |                    |



### Zones clustering and assessment

We clustered the municipalities with similar soil and climate using a combination of principal components analysis (PCA) and ascendant hierarchical classification (with 'FactomineR' R package).

Α.

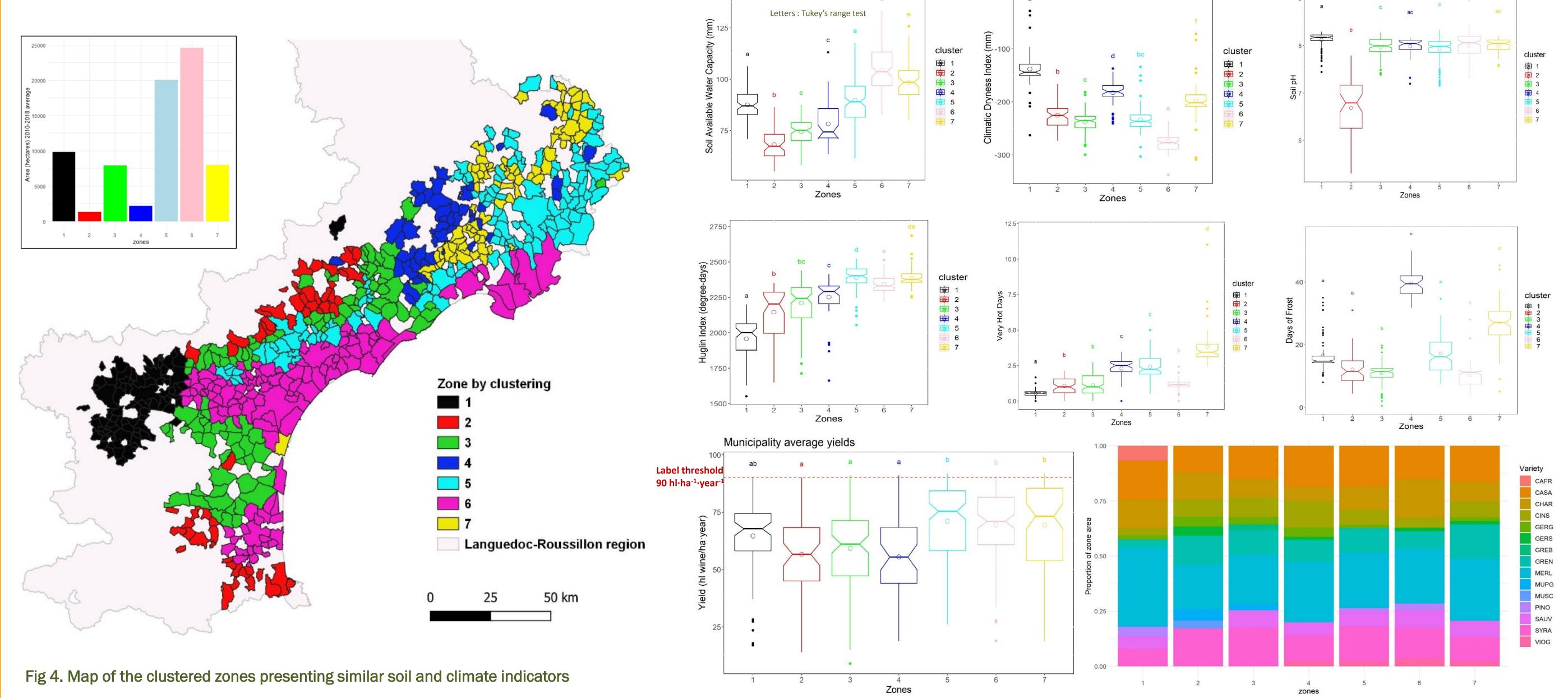



Fig 5. Boxplots of yield, soil and climate indicators in the municipalities of each zone and barplot of 10 most grown grapevine varieties. CAFR for Cabernet Franc; CASA for Cabernet Sauvignon; CHAR for Chardonnay; CINS for Cinsault; GERG for Générique Rouge (several red wine varieties mixed); GERS for Générique Rosé (several rosé wine varieties mixed); GREB for Grenache Blanc; GREN for Grenache Noir; MERL for Merlot; MUPG for Muscat Petit Grain; MUSC for Muscat; PINO for Pinot Noir; SAUV for Sauvignon Blanc; SYRA for Syrah and VIOG for Viognier.

### **Conclusions & Perspectives**

The zones identified had similar yield-gap levels but because of different environmental factors. This work helped to identify the environmental factors involved in grapevine yield-gaps at the regional scale. Further research needs to be done concerning the plant material and the farming practices involved in the vineyards to understand the best **Genotype x Environment x Management** interactions (Van Ittersum et al., 2013)

### References

Styc, Q., Lagacherie, P., 2021. Uncertainty assessment of soil available water capacity using error propagation : A test in Languedoc-Roussillon. Geoderma 391, 114968. Touzard, J.-M., Aigrain, P., Bois, B., Duchêne, E., de Cortazar Atauri, I.G., Giraud-Heraud, E., Gautier, J., Hannin, H., Ollat, N., 2017. Lessons from a Prospective on the French Wine Industry Under Climate Change (2050). Vaysse, K., Lagacherie, P., 2015. Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Reg. 4, 20–30.

Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local to global relevance—a review. Field Crops Research, 143, 4-17.

**TERCLIM** I 2<sup>nd</sup> ClimWine Symposium I XIV<sup>th</sup> International Terroir Congress I 3-8 July 2022 I Bordeaux, France