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1. INTRODUCTION  

Wine is an important source of polyphenols both in terms of quality and quantity [1]. Among these compounds, 

resveratrol and its derivatives occupy a special place. This compound has long been considered one of the main 

responsible for the French paradox [2]. Resveratrol and its derivatives are well-known wine constituents, 

resveratrol and piceid being the most abundant [3, 4]. In addition, these compounds exhibited wide range of 

biological activities [5, 6]. Their content in wines depends on many biotic and abiotic factors intervening from 

grape to wine [7, 8]. The trans/cis isomerization of resveratrol under light exposure is a well-known chemical 

reaction that occurs in wine [9]. The hydrolysis of piceid by microorganisms was also described [10]. Moreover, 

resveratrol can be oligomerized by oxidative coupling reactions in presence of metals or enzymes [11, 12]. 

Recently, oxidative coupling of resveratrol was used to form oligomers with strong antifungal potential [13]. 

Moreover, we demonstrated that oxidative coupling of resveratrol occurs in wine leading to the formation of new 

dimers [14]. This article summarizes the main results obtained concerning the formation and presence of these 

compounds in wine. In addition, the biological activities of these compounds were also evaluated on cell lines. 

2. MATERIALS AND METHODS  

2.1. Oxidative coupling of resveratrol in ethanol 

 

Oxidative couplings of resveratrol and piceid were conducted base on the protocol described in our previous 

work [14]. Briefly, resveratrol or piceid were stirred in presence of silver acetate (AgOAc) in ethanol under 

controlled conditions. Synthetized compounds were purified by liquid chromatography and identified by 

combination of mass and NMR spectrometry. 

2.2. Wine treatment and analysis 

 

Red wine samples were analyzed before and after heat treatment at 30°C for 24 hours. For resveratrol derivative 

analysis, wine samples were summited to solid phase extraction protocol using SPE Hypersep C18 cartridges 

(Thermo Fisher Scientific) as previously described [14]. Compounds identification and quantification were 

achieved by liquid chromatography coupled to triple quadrupole-mass spectrometry (LC-QqQ-MS) on an 

Agilent equipment. Analyses were performed in multiple reaction monitoring approach (MRM) using standard 

solutions for calibration curves. 
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2.3. Biological assays 

2.3.1. Murine macrophage cell line assays 

 

Anti-inflammatory effects were evaluated in RAW 264.7 macrophage cell line provided by the American Type 

Culture Collection (ATCC) as described else here [14]. Briefly, preventive effects of resveratrol derivatives 

against production of nitric oxide (NO) and reactive oxygen species (ROS) after exposition to lipopolysaccharide 

(LPS) were monitored. 

2.3.2. Human breast cancer cell line assays 

 

The human breast cancer (BC) cell lines MCF-7, HCC-1954 (estrogen- and progesterone-receptors negative) and 

MDA-MB-231 (triple negative) from ATCC, were used in cytotoxic assays. The cell lines were suspended in the 

incubation medium. HCC-1954 and MCF-7 were maintained in Roswell Park Memorial Institute medium (RPMI 

1640), and MDA-MB-231 in Dulbecco’s Modified Eagle’s Medium (DMEM). Both culture media were 

supplemented with 10% heat inactivated fetal bovine serum, 2 mM L-glutamine and antibiotics (0.1 mg/mL 

streptomycin and 100 U/mL penicillin). DMEM was also supplemented with 1mM pyruvate. Cells were grown 

in an incubator at 37ºC with 5% CO2 atmosphere. After reaching approximately 80-90% of confluence, cells 

were detached in a solution of 0.1% trypsin and 0.04% EDTA and plated as required for further experiments. 

Cell lines were seeded into 96-well plates at 3x103 (HCC-1954) and 2x103 (MCF-7 and MDA-MB-231) 

cells/well 24 h before treatment. Increasing concentrations (0-40 M) of resveratrol, piceid, -viniferin, and -

viniferin diglucoside were added and cells were incubated for 72 h. Stilbenes were dissolved in dimethyl 

sulfoxide (DMSO) at a final concentration of 0.02%. The same amount of DMSO was added to control cells. 

After treatment, the cell viability was determined using the crystal violet assay [16]. The absorbance was 

recorded at 590 nm in a Synergy HT microplate reader. Values were normalized with respect to the zero time 

control (no addition). 

3. RESULTS AND DISCUSSION 

3.1. Oxidative coupling of resveratrol and piceid 

 

Resveratrol was subjected to oxidative coupling in presence of silver acetate in ethanol. This reagent is 

classically employed to induce phenol oxidation reaction [15]. The reaction of resveratrol leads to the formation 

of several resveratrol dimers including δ-viniferin, quadangularin B and oxistilbenin F and G [14]. Among these 

compounds, δ-viniferin is the principal dimer of resveratrol formed (Fig. 1). 

 

 

Figure 1. Dimerization of resveratrol and piceid in δ-viniferin and δ-viniferin diglucoside, respectively. 

Similarly to resveratrol, piceid was subjected to oxidative coupling in presence of AgOAc in ethanol. The 

reaction leads to the formation of several products, δ-viniferin diglucoside being the most abundant (Fig. 1). 



 
Compound identification was performed by purification on a preparative HPLC followed by mass spectrometry 

and NMR spectrometry. The δ-viniferin diglucoside was obtained as a brown amorphous powder. Complete 

structure elucidation was achieved by combination of HRMS and NMR experiments. 

3.2. Formation of δ-viniferin in wine after heating 

 
To verify whether oxidative coupling of resveratrol could occur in wine, a red wine was subjected to heating at 

30°C for 24 h. Resveratrol and δ-viniferin contents were measured before and after heating (Fig. 2). Resveratrol 

derivatives were quantified on a LC-QqQ-MS spectrometer using MRM mode [14]. After heating, a significant 

decrease in resveratrol content is observed. This decrease is associated with a significant increase in δ-viniferin 

content. These results indicate that heating treatment for 24 h at 30°C induced oxidative coupling of resveratrol 

to form dimers. Thus, resveratrol dimerization could occur during wine aging. 

 

 

Figure 2. Resveratrol and δ-viniferin content before and after red wine heating (mean + SEM (n=3)). 

3.3. Biological assays 

 

The anti-inflammatory activities of dimeric stilbenes were evaluated using LPS-induce RAW 264.7 cells model. 

Resveratrol and δ-viniferin reduced NO and ROS production, δ-viniferin being the more active stilbene (Fig. 3). 

The δ-viniferin was slightly more active in inhibiting ROS production. The δ-viniferin diglucoside was not 

active. Thus, depending of the compounds, oxidative coupling could modulate the biological activities of red 

wine stilbenes. 

 

    
Figure 3. Effect of treatment with stilbene and LPS (0.1 µg/mL) on the ROS production and NO formation in 

RAW 264.7 cells. Data are expressed as percentage of the control (cells treated with LPS alone set to 100% 

production), corresponding to the mean ± SEM (n=4), *p<0.05. 

 

In order to study the biological activity of different resveratrol derived stilbenes, human breast cancer cell lines 

were used as the biological model and the cell viability was determined by crystal violet assay. The compounds 

tested were resveratrol, piceid, δ-viniferin and δ-viniferin-diglucoside (Fig. 4). Results showed that resveratrol, 

the reference stilbene, was cytotoxic at the highest concentration of 40 µM in MCF-7 and MDA-MB-231, while 

it had no effect at lower concentrations or in HCC-1954. By contrast, the resveratrol-derived stilbenes increased 

cell growth to different degrees, depending on the cell type. In HCC-1954 the effect was significant and dose-

dependent up for concentrations below 40 µM for the three compounds, at this concentration not being 

significant. In MCF-7, δ-viniferin diglucoside did not affect cell growth at any concentration, while piceid 
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increased proliferation dose-dependently. In MDA-MB-241, δ-viniferin had no effect on cell growth, while δ-

viniferin diglucoside was proliferative at high doses. These preliminary results do not encourage the 

development of therapies based on these compounds against breast cancer. 

 

            

 
Figure 4. Comparison of stilbene effects on cell viability of human breast cancer cell lines: HCC-1954; MCF-7; 

and MDA-MB-231. Data are expressed as mean ± SEM (n = 3), *p<0.05 different from the corresponding 

control (no additions) at the same time. 
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