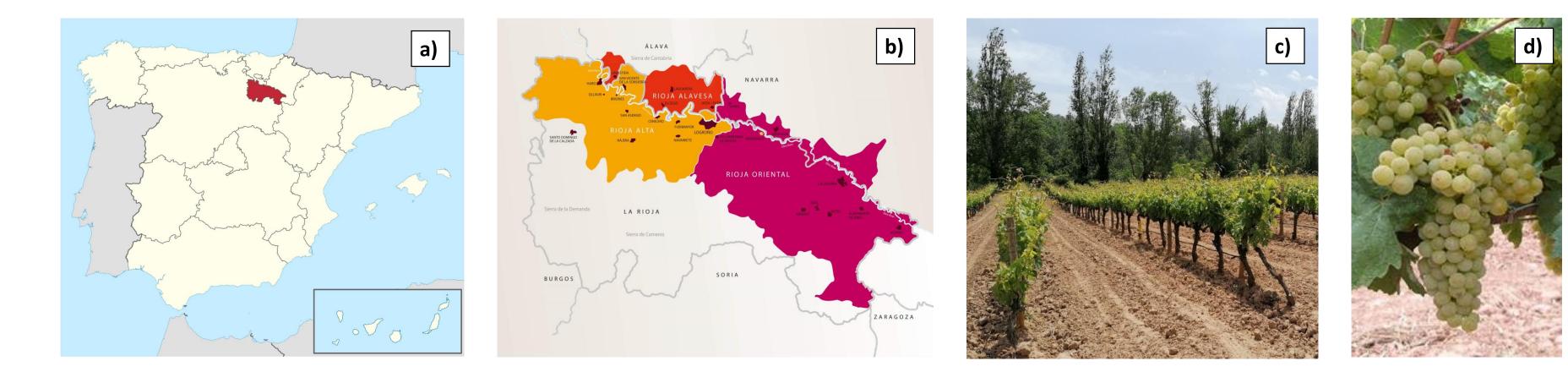
2nd ClimWine Symposium I XIVth International Terroir Congress

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Instituto de Ciencias de la Vid y del Vino

La Rioja CSIC W UNIVERSIDAD Rebeca Murillo-Peña, Teresa Garde-Cerdán and José María Martínez-Vidaurre Instituto de Ciencias de la Vid y del Vino-ICVV (Gobierno de La Rioja, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja) Ctra. de Burgos, Km. 6. 26007 Logroño, La Rioja, Spain Presenting author: rebeca.murillo@icvv.es


1. Introduction and Objective

- Foliar application of urea is efficiently assimilated by the plant. This fertilization technique reduces production costs and contributes to eco-friendly agriculture [1].
- Phenolic compounds contribute to the organoleptic characteristics of grapes and wines [colour and mouthfeel sensations (astringency sensation or bitterness)] [2].
- Health benefits of phenolic compounds are cardioprotective, anti-inflammatory, anti-carcinogenic and antimicrobial activities [3].
- This research aimed to study the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes.

2. Materials and Methods

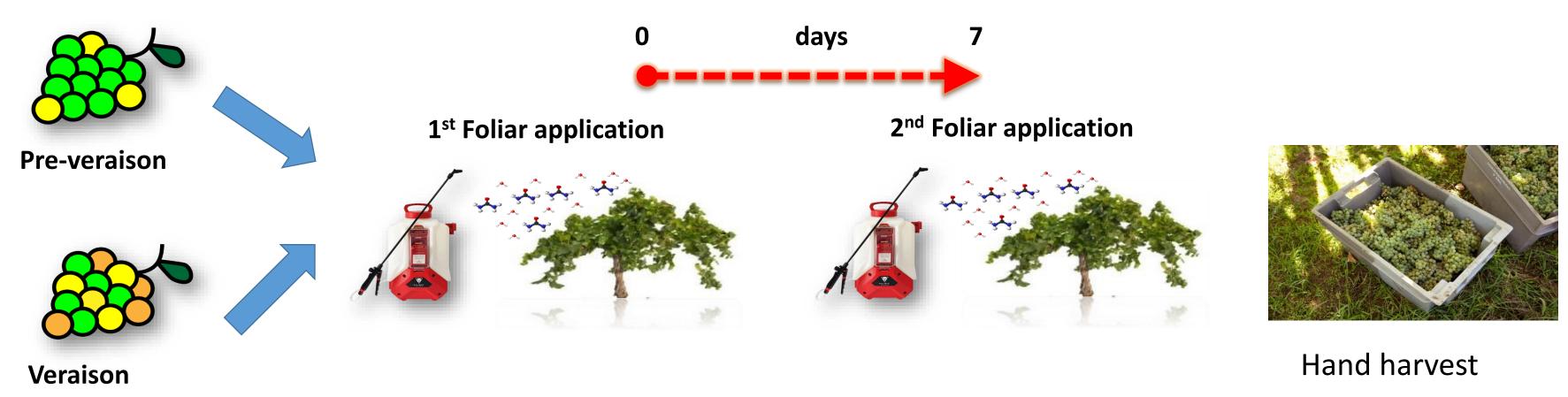
Vineyard (Figures 1a-c):

- Located in D.O.Ca. Rioja (North of Spain).
- Variety : Tempranillo Blanco

- Rootstocks: 110-Richter
- Vine-training system: double Royat cordon

Tempranillo Blanco variety (Figure 1d):

- Natural mutation of the Tempranillo variety
- There is only one clone of Tempranillo Blanco.
- Variety authorised in 2008 in the D.O.Ca. Rioja


Foliar application of urea (Figure 2):

- This experiment was carried out in 2019 and 2020 vintages.
- Three treatments of urea 3, 6 y 9 kg N/ha and control (only water). In all aqueous solutions 1 ml/l Tween[®] 80 (wetting agent) was added .
- Treatments were sprayed at two different phenological stages.
 - Pre-veraison (Pre): berry colour starts to change.
 - Veraison (Ver): 60-70% of berries changed colour.
- For each application, 200 ml/plant was sprayed over leaves.
- Treatments and control were carried out in triplicate and were repeated one week later.

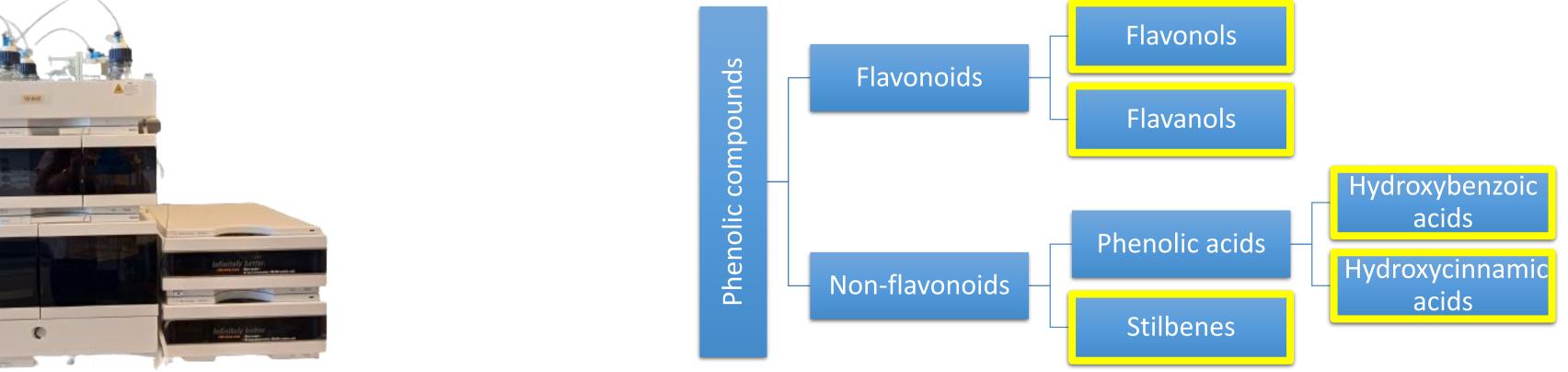

Phenolic compounds were extracted from grapes and then, they were quantified by high-performance liquid chromatography (HPLC) [5].

Figure 1. Vineyard located a) La Rioja, Spain. b) D.O.Ca. Rioja [4]. c) Vineyard. d) Tempranillo Blanco cluster.

Figure 2. Diagram of urea foliar applications in the vineyard and harvest of Tempranillo Blanco grapes.

lerc

2022

- 00 202 N
- These compounds were quantified individually, but only the totals of each groups are shown in the Figures 4a-j (flavonols, flavanols, hydroxybenzoic acids, hydroxycinnamic acids and stilbenes).
- The results were studied statistically by analysis of variance (ANOVA).

Figure 3. Liquid chromatography equipment and groups of phenolic compounds determined by HPLC (highlighted in yellow).

3. Results

vintage

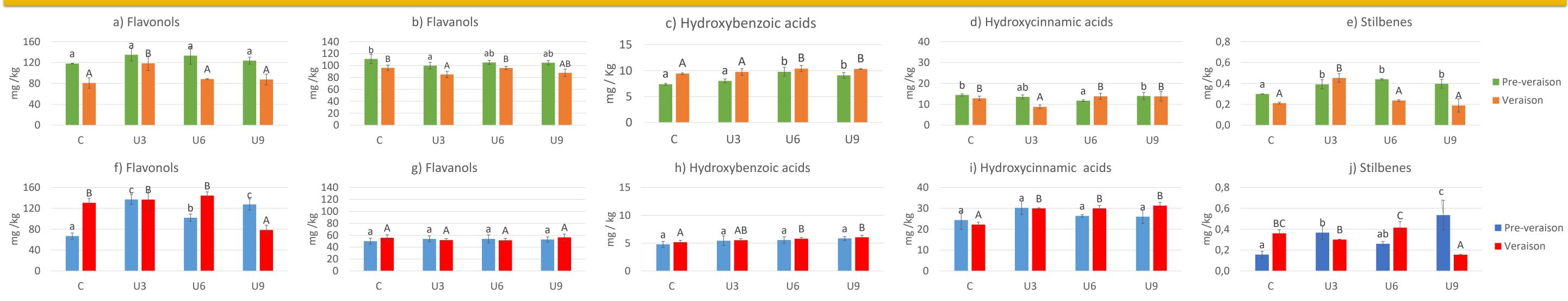


Figure 4. Grape phenolic compounds (mg/kg). Control (C) and urea treatments with 3 kg N/ha (U3), 6 kg N/ha (U3), 6 kg N/ha (U9) applied at pre-veraison and veraison in the 2019 (a, b, c, d and e); and in 2020 (f, g, h, I and j). The treatments were carried out in triplicate (n = 3) and the results were expressed as the mean ± standard deviation. Different lowercase letters indicate significant differences between the treatments carried out at pre-veraison and capital letters expose significant differences between the treatments applied at veraison (Duncan's Test, p-value \leq 0.05).

vintage

4. Conclusions

• The lowest and the highest dose of urea (U3 and U9), applied at pre-veraison, were the

U6 and **U9** treatments applied at **Pre** and **Ver** increased the hydroxybenzoic acids concentration (Figure 4c).

All foliar treatments applied at Pre (3, 6 and **9 Kg N/ha**) enhanced the **stilbenes** content (Figure 4e).

U3-Ver was the only treatment that rose flavonol (Figure 4a) and stilbene contents (Figure 4e).

U3-Pre and **U9-Pre** treatments increased stilbenes content (Figure 4j).

Hydroxybenzoic acids content was improved by U6-Ver and U9-Ver (Figure 4h).

Hydroxycinnamic acids concentration in grapes was increased by all treatments applied at Ver (3, 6 and 9 Kg N/ha) (Figure 4h).

best treatments in order to improve the Tempranillo Blanco grape stilbenes composition.

U6-Ver and U9-Ver were the best to rise the Tempranillo Blanco grape hydroxybenzoic acids content.

References

[1] Fernández, V., Sotiropoulos, T., & Brown, P. H. (2013). Foliar fertilization: scientific principles and field *practices*. First edition. Paris, France: International fertilizer industry association (IFA)

[2] Gonzalo-Diago, A., Dizy, M., & Fernández-Zurbano, P. (2014). Contribution of low molecular weight phenols to bitter taste and mouthfeel properties in red wines. Food Chemistry, 154, 187–198.

[3] Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18, 1818–1892.

[4] Rioja wine academy. <u>https://riojawineacademy.com</u>

[5] Portu, J., López-Alfaro, I., Gómez-Alonso, S., López, R., & Garde-Cerdán, T. (2015). Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chemistry, 180, 171-180.

Acknowledgements

Many thanks for the financial support given by the Government of La Rioja (PR-03-19 and PR-03-20) and European Regional Development Fund (ERDF). Moreover, R. M.-P. thanks National Instituto Nacional de Investigación Institute for Agricultural and Food Research and Technology (INIA) y Tecnologia Agraria y Alimentaria and Government of La Rioja for the predoctoral contract.

Programa OPERATIVO FEDER DE LA RIOJA 2014-2020

