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Figure 1. Typical Absorbance spectra (A) and CIE 1931 x,y coordinate indices (B) for 1 

Cabernet sauvignon, Merlot, Pinot noir and Zinfandel grape extract samples.  The data in 2 

Panel A represent the extracts diluted 50 fold in 50% EtOH pH 2 solvent whereas the CIE 3 

indices in Panel B were adjusted for the dilution factor. 4 

Figure 2. Typical fluorescence Excitation-Emission matrix contour plots for the 1 

same Cabernet sauvignon (A), Merlot (B), Pinot noir (C) and Zinfandel  (D) grape 2 

extract samples shown in Figure 1 each scaled to the peak EEM contour values. 3 

Rapid, accurate quantification of grape berry phenolics, anthocyanins and tannins, and discrimination of 1 

grape varieties are both important for effective quality control of harvesting and initial processing for 2 

winemaking.  Current reference technologies including High Performance Liquid Chromatography (HPLC) 3 

can be rate limiting and too complex and expensive for effective field operations.  In this paper we analyse 4 

robotically prepared grape extracts from several key varieties (n=Calibration/n=Prediction samples) 5 

including Cabernet sauvignon (64/10), Grenache (16/4), Malbec (14/4), Merlot (56/10), Petit syrah (52/10), 6 

Pinot noir (54/8), Syrah (20/2), Teroldego (14/2) and Zinfandel (62/12).  Key phenolic and anthocyanin 7 

parameters measured by HPLC included Catechin, Epicatechin, Quercetin Glycosides, Malvidin 3-8 

glucoside, Total Anthocyanins and Polymeric Tannins.  Split samples diluted 50-fold in 50 % EtOH pH 2 9 

were analysed in parallel using the A-TEEM method following Multi-block Data Fusion of the absorbance 10 

and unfolded EEM data.  A-TEEM chemical regressions were calibrated (n = 390) using Extreme Gradient 11 

Boost (XGB) Regression and evaluated based on the Root Mean Square Error of the Prediction (RMSEP), 12 

the Relative Error of Prediction (REP) and Coefficient of Variation (R2P) of the Prediction data (n = 62).  13 

The regression results yielded an average Relative Error of Prediction (REP) of 5.89 ± 2.47 % and R2P of 14 

0.941 ± 0.025.   While we consider the REP values to be in the acceptable range at significantly < 10 %, 15 

we acknowledge that both the grape extraction method repeatability and HPLC reference method sample 16 

repeatability (5-8 % RSD) likely constituted the major sources of variation compared to the A-TEEM 17 

instrumental sample repeatability (< 2 % RSD).  Varietal classification was analysed using Agglomerative 18 

Hierarchical Cluster Analysis (HCA) and XGB discrimination analysis of the multi-block data.  The 19 

classification results yielded 100 % True Positive and True Negative responses for the Calibration and 20 

Prediction Data for all tested varieties.  We conclude that the A-TEEM method requires a minimum of 21 

sample preparation and rapid acquisition times (< 1 min) and can serve as an accurate secondary method 22 

for both grape varietal identification and phenolic quantification.  Importantly, the software application of 23 

the regression and classification models can be effectively automated for operators. 24 

Table 2. Extreme Gradient Boost Regression analysis statistics for key quality-associated phenolic 1 

and anthocyanin parameters including the R2, the Relative Error of Prediction (REP), The Root Mean 2 

Square Error or Standard Deviation (RMSE SD) and the maximum concentration range (Max Range) 3 

for the prediction set.  The calibration/validation sets included 390/62 sample files representing 4 

195/31 samples, respectively.  The table is sorted by the Max Range parameter. 5 

 

 

    

Compound/Parameter 

 

R2P REP% 

RMSE(SD) 

(mg/L) Max Range (mg/L) 

 

 

    

Polymeric Tannins  0.9244 7.56 14.38 348.51 

Total Anthocyanins  0.9655 3.45 7.58 187.35 

Malvidin-3-Glucoside  0.9173 8.27 4.74 76.46 

Catechin  0.9783 2.18 1.09 50.61 

Epicatechin  0.9316 6.84 1.33 21.81 

Quercetin Glycosides  0.9293 7.07 0.79 14.16 

 

 

    

Mean  0.9411 5.89 

  

SD  0.0247 2.47 

  

 6 

Table 1. Confusion matrix for Extreme Gradient Boost Discrimination Analysis of key grape variety 1 

extracts.  The number of calibration and validation sample files are represented by Cal (n) and Val (n), 2 

respectively.  Each sample was repeated in two files and all validation sample files were excluded from the 3 

calibration data.  *See Footnote 1 for definitions of column parameters, TPR, TNR, FPR, FNR, Err, P and 4 

F1. 5 

 6 

          

Variety Cal (n) Val (n) TPR TNR FPR FNR Err P F1 

          

Cabernet 

sauvignon 64 10 1 1 0 0 0 1 1 

Grenache 16 4 1 1 0 0 0 1 1 

Malbec 14 4 1 1 0 0 0 1 1 

Merlot 56 10 1 1 0 0 0 1 1 

Petit Sirah 52 10 1 1 0 0 0 1 1 

Pinot noir 54 8 1 1 0 0 0 1 1 

Syrah 20 2 1 1 0 0 0 1 1 

Teroldego 14 2 1 1 0 0 0 1 1 

Zinfandel 62 12 1 1 0 0 0 1 1 

  7 *Footnote of Table 1: 1 

TPR: proportion of positive cases that were correctly identified (Sensitivity), = TP/(TP+FN)  2 

FPR: proportion of negatives cases that were incorrectly classified as positive, = FP/(FP+TN)  3 

TNR: proportion of negatives cases that were classified correctly (Specificity), = TN/(TN+FP)  4 

FNR: proportion of positive cases that were incorrectly classified as negative, = FN/(FN+TP)  5 

Err: Misclassification error = proportion of samples which were incorrectly classified,  6 

= 1-accuracy, = (FP+FN)/(TP+TN+FP+FN)  7 

P: Precision, = TP/(TP+FP)  8 

F1: F1 Score, = 2*TP/(2*TP+FP+FN)   9 

Figure 3. Agglomerative Hierarchical Cluster Analysis (HCA) dendrogram for the multi-block 1 

A-TEEM data representing the varieties shown in the legend. The data included both the 2 

calibration (n=390) and validation (n=62) file sets. 3 

Figure 4. Extreme Gradient Boost regression plots for the prediction data set for key phenolic 1 

and anthocyanin compounds.  All lines were constrained to a slope of unity and intercept of 0 2 

mg/L. The compound identities are listed in the legends.  The regression statistics are 3 

contained in Table 2. 4 

•The A-TEEM accurately classified 9 varieties of grape juice 

extracts.

•The A-TEEM accurately predicted flavan-3-ol, flavonol, tannin 

and anthocyanin concentrations with a relative prediction error 

(5.89%) that was consistent with the reference HPLC 

repeatability (intraday 5% and inter-3-day 8% ).

•The A-TEEM acquisition scan time was less than 1 min.

•The A-TEEM qualifies as a suitable method for grape quality 

evaluation and varietal authentication.

Figure 5. Panel A shows the Mean Sum distribution comprising 1 

the six quality compound marker concentrations listed in the 2 

legend plotted as the averages from the validation data set for 3 

each of the six varieties tested on the x-axis.  Panel B shows the 4 

same data as Panel A organized as the normalized distribution of 5 

each of the six quality marker compounds on the x-axis for the six 6 

varieties listed in the legend. 7 
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