Terroir 1996 banner
IVES 9 IVES Conference Series 9 Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Abstract

[English version below]

Les profils climatiques appropriés pour une activité photosynthétique optimale de la vigne sont déterminés dans différentes régions d’Afrique du Sud et localités à l’intérieur d’une région particulière. La moyenne horaire de température ambiante, vitesse du vent et humidité relative sont calculées pendant les périodes de pré-et post-véraison à partir de données de trois années et de quatre stations météorologiques dans chacune de trois régions viticoles [classées “chaudes” (Stellenbosch et Roberston) et “très chaudes” (Upington) selon les indices d’Huglin et de Winkler]. La période comprise entre 9 et 16 heures pour l’activité photosynthétique maximale est utilisée. La température (25-30°C), vitesse de vent (<4 m/s) et humidité relative (60-70°C) nécessaires à une activité photosynthétique optimale sont surimposés sur les profils climatiques respectifs des différentes régions. L’intensité lumineuse ambiante est acceptée comme étant suffisante. Une variation remarquable du nombre d’heures disponibles pour une photosynthèse optimale apparaît. Basées sur les seuls besoins climatiques, les conditions pour la photosynthèse seraient les meilleures dans la région de Robertson. Dans les deux autres régions, la photosynthèse serait limitée à un plus haut niveau, en raison de basses températures. en période de pré-véraison et de vents forts en période de pré-et post-véraison dans la région de Stellenbosch et en raison de températures élevées et faibles humidités pendant les périodes de pré-et post-véraison dans la région d’Upington. Les conditions climatiques pour la croissance seraient meilleures dans la région de Robertson, suivies d’Upington et Stellenbosch. Les conditions climatiques à l’intérieur d’une région particulière peuvent également varier remarquablement sur des distances très courtes, spécialement dans la Province occidentale du Cap, tandis que des régions peuvent être de climats semblables malgré des altitudes, expositions et distances à l’océan différentes. Les localités diffèrent beaucoup selon leurs possibilités à subvenir aux besoins de la photosynthèse. Les profils climatiques des différentes régions et localités peuvent évidemment avoir de sérieuses implications sur le bon fonctionnement physiologique de la vigne et l’impact de ce stress climatique potentiel (direct ou indirect) sur les processus physiologiques semblerait être un facteur à considérer dans le zonage viticole.

 

The suitability of climatic profiles for optimal grapevine photosynthetic activity in different South Afiican regions and in localities within a particular region was determined. Three-year hourly mean ambient temperature, wind speed and relative humidity data from four weather stations in each of three viticultural regions [“hot” (Stellenbosch and Robertson Regions) and “very hot” (Upington Region) classification according to Huglin and Winkler indices] were averaged during the pre- and post-véraison growth periods. A period between 09:00 and 16:00 for maximum photosynthetic activity was used. Temperature (25-30 °C), wind speed (< 4 m/s) and relative humidity (60 – 70 %) requirements for optimal photosynthetic activity were superimposed onto the respective regional climatic profiles. Ambient light intensity was accepted as being sufficient. Marked variation in number of heurs available for optimal photosynthesis occurred. Based on climatic requirements only, conditions seemed best suited for photosynthesis in the Robertson region. In the other two regions, photosynthesis would be reduced to a higher extent, due to low pre-véraison temperature and strong pre- and post­véraison wind (Stellenbosch) and high pre- and post-véraison temperature and low humidity (Upington). Climatic conditions for growth seemed best in Robertson, followed by Upington and Stellenbosch. Conditions within a particular region may also vary markedly over very short distances, especially in the Western Cape, whereas other locations may be climatically similar in spite of differences in altitude, aspect and distance fom the sea. The locations differed markedly regarding their feasibility to support photosynthesis. Evidently, climatic profiles in different regions and locations may have serious implications for proper physiological functioning of grapevines and the impact of potential climatic stress (direct and indirect) on physiological processes would seem to be a factor for consideration in viticultural zoning.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

J.J. HUNTER and V. BONNARDOT

ARC Institute for Fruit, Vine and Wine & ARC Institute for Soil, Climate and Water, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Vigne, climat, zonage, physiologie, photosynthèse
Grapevine, climate, zoning, physiology, photosynthesis

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs.

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

The effects of perennial cover crop management on soil temperature and vine water status

The implications of perennial cover crop management on vine vigor and yield have been well documented. However, whereas multiple studies show that cover crop management affects grapevine dry matter production, water, and nutrient status, the specific effects of a new hybrid perennial cover crop on soil temperature and its relationship to vine water status in vineyards has not been explored. This study will compare 3 different perennial cover crop combinations and tillage practices with a no-till seeding of a new hybrid perennial, Poa bulbosa (Pb).

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.