IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Grape genetic research in the age of pangenomes

Grape genetic research in the age of pangenomes

Abstract

Genetic approaches towards better Grape & Wine Quality
Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies. Completely phased haplotypes have been instrumental to advances in grape research due to high heterozygosity, structural variation, and gene content variability across homologous chromosomes.  Phased assemblies of grape genomes have revealed genomic complexities that were inaccessible in previous haploid representations, such as haplotype-specific structural variation events, trait-associated alleles, and allele-specific gene expression and methylation. The availability of wild and cultivated grape diploid genome references containing the genes and alleles underlying traits of interest has been instrumental in dissecting the genetic basis of disease resistance, flower sex determination, aroma, and flavor. User-friendly web platforms, like www.grapegenomics.com, have played a critical role in rapidly and broadly sharing genomic data and tools, and foster multidisciplinary collaborations and progress in grape research. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dario Cantu1*

1Department of Viticulture & Enology

Contact the author

Keywords

assembly of diploid genome references, comparative genomics, genomic structural variability, genetic diversity, public resources 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed.

Management of cover plants impacted the composition of Cabernet Sauvignon red wines in a temperate region of Brazil

– Several practices can be applied to vineyards in order to ensure good healthy for grapevines, adequate yield and fruit quality. Among them, the use of cover crops is a relevant option for soil management. It increases the organic matter, improves water infiltration, reduces risks of soil erosion and greenhouse gas emissions, in addition improving biodiversity in the vineyard.

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Aims: The Barossa wine region in South Australia comprises six sub-regions and is renowned for its Shiraz wines. However, there is no comprehensive documentation of the distinctive sensory characteristics of wines from these sub-regions.