IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Grape genetic research in the age of pangenomes

Grape genetic research in the age of pangenomes

Abstract

Genetic approaches towards better Grape & Wine Quality
Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies. Completely phased haplotypes have been instrumental to advances in grape research due to high heterozygosity, structural variation, and gene content variability across homologous chromosomes.  Phased assemblies of grape genomes have revealed genomic complexities that were inaccessible in previous haploid representations, such as haplotype-specific structural variation events, trait-associated alleles, and allele-specific gene expression and methylation. The availability of wild and cultivated grape diploid genome references containing the genes and alleles underlying traits of interest has been instrumental in dissecting the genetic basis of disease resistance, flower sex determination, aroma, and flavor. User-friendly web platforms, like www.grapegenomics.com, have played a critical role in rapidly and broadly sharing genomic data and tools, and foster multidisciplinary collaborations and progress in grape research. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dario Cantu1*

1Department of Viticulture & Enology

Contact the author

Keywords

assembly of diploid genome references, comparative genomics, genomic structural variability, genetic diversity, public resources 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Grape phylloxera meets drought: increased risk for vines under climate change?

Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.