IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Grape genetic research in the age of pangenomes

Grape genetic research in the age of pangenomes

Abstract

Genetic approaches towards better Grape & Wine Quality
Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies. Completely phased haplotypes have been instrumental to advances in grape research due to high heterozygosity, structural variation, and gene content variability across homologous chromosomes.  Phased assemblies of grape genomes have revealed genomic complexities that were inaccessible in previous haploid representations, such as haplotype-specific structural variation events, trait-associated alleles, and allele-specific gene expression and methylation. The availability of wild and cultivated grape diploid genome references containing the genes and alleles underlying traits of interest has been instrumental in dissecting the genetic basis of disease resistance, flower sex determination, aroma, and flavor. User-friendly web platforms, like www.grapegenomics.com, have played a critical role in rapidly and broadly sharing genomic data and tools, and foster multidisciplinary collaborations and progress in grape research. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dario Cantu1*

1Department of Viticulture & Enology

Contact the author

Keywords

assembly of diploid genome references, comparative genomics, genomic structural variability, genetic diversity, public resources 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Foreseeing climatic changes, the abnormally hot and dry year of 2005 can be revealer of some varieties behavior in different climatic conditions.

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).