IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Abstract

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae. After cell death, autolysis trigger the release of mannoproteins and β-glucans, major components of yeast cell walls, influencing color, aroma, body, foaming properties, and stability of wine. Moreover, they can stimulate the metabolism of malolactic bacteria, while some fatty acids, also released during autolysis, act as inhibitors. Analysis of the cell wall structure was carried out both on cells grown in liquid medium and on cell walls previously separated from the other components. The autolytic capacity was assayed by sampling the cells at different times during induced autolysis in clarified and pasteurized must. From five to ten infrared spectra were acquired on each sample in the 4,000-700 cm-1 range in Attenuated Total Reflection on a 50×50 μm2 area. Spectra were analyzed after pretreatment through Hierarchical Cluster Analysis and Principal Component Analysis. Preliminary results were evaluated in relation to conventional spectrophotometric methods to quantify mannoproteins and β-glucans. The thickness of the cell walls was determined by means of scanning (SEM) and transmission electron microscopy (TEM). From the point of view of cell wall composition two groups of yeasts were distinguished by multivariate statistical analysis on the FTIR spectra since the strains EC1118, MY11 and PEDRO2000E showed higher absorption bands of mannoproteins and β-glucans. With conventional methods, the cell walls of the first two strains, alongside K1 and MY8, displayed a higher content of parietal polysaccharides, while the latter had the thickest wall among all the tested yeasts. The strains BM45 and D47 have a thinner surface structure. Regarding the autolytic process, again two different clusters were found distinguishing the behavior of the strains EC1118 and FRB with a similar timing of autolysis on one side from CH and Q20 on the other side. Furthermore, the latter strain presented a higher absorption in the spectral zone related to lipids, which can be correlated with a greater release of fatty acids in the medium. In conclusion, FTIR microspectroscopy proved to be an accurate and informative technique, suitable to highlight profound differences among S. cerevisiae strains as concerns both the content of parietal polysaccharides and the evolution of autolysis. Thus, this technique may become an option for the selection of starter cultures with properties fo great interest for the wine sector.

References

[1] Burattini, E., Cavagna, M., Dell’Anna, R., Malvezzi Campeggi, F., Monti, F., Rossi, F., & Torriani, S. (2008). A FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vibrational Spectroscopy, 47(2), 139-147. https://doi.org/10.1016/j.vibspec.2008.04.007.
[2] Cavagna, M., Dell’Anna, R., Monti, F., Rossi, F., & Torriani, S. (2010). Use of ATR-FTIR microspectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a base wine. Journal of Agricultural and Food Chemistry, 58(1), 39–45. https://doi.org/10.1021/jf902369s.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Binati Renato Leal1, Monti Francesca2, Felis Giovanna1 and Torriani Sandra1

1Department of Biotechnology, University of Verona 
2Department of Computer Science, University of Verona

Contact the author

Keywords

FTIR microspectroscopy; starter cultures; Saccharomyces cerevisiae; autolysis; wine quality

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Water retention properties of viticultural calcisols from D. O. P. Valdepeñas (Spain)

A good knowledge of the soil physicochemical properties, as well as its ability to retain and put the necessary water available to the plants, is essential when it comes at the design of an irrigation plan.

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.