IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Abstract

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae. After cell death, autolysis trigger the release of mannoproteins and β-glucans, major components of yeast cell walls, influencing color, aroma, body, foaming properties, and stability of wine. Moreover, they can stimulate the metabolism of malolactic bacteria, while some fatty acids, also released during autolysis, act as inhibitors. Analysis of the cell wall structure was carried out both on cells grown in liquid medium and on cell walls previously separated from the other components. The autolytic capacity was assayed by sampling the cells at different times during induced autolysis in clarified and pasteurized must. From five to ten infrared spectra were acquired on each sample in the 4,000-700 cm-1 range in Attenuated Total Reflection on a 50×50 μm2 area. Spectra were analyzed after pretreatment through Hierarchical Cluster Analysis and Principal Component Analysis. Preliminary results were evaluated in relation to conventional spectrophotometric methods to quantify mannoproteins and β-glucans. The thickness of the cell walls was determined by means of scanning (SEM) and transmission electron microscopy (TEM). From the point of view of cell wall composition two groups of yeasts were distinguished by multivariate statistical analysis on the FTIR spectra since the strains EC1118, MY11 and PEDRO2000E showed higher absorption bands of mannoproteins and β-glucans. With conventional methods, the cell walls of the first two strains, alongside K1 and MY8, displayed a higher content of parietal polysaccharides, while the latter had the thickest wall among all the tested yeasts. The strains BM45 and D47 have a thinner surface structure. Regarding the autolytic process, again two different clusters were found distinguishing the behavior of the strains EC1118 and FRB with a similar timing of autolysis on one side from CH and Q20 on the other side. Furthermore, the latter strain presented a higher absorption in the spectral zone related to lipids, which can be correlated with a greater release of fatty acids in the medium. In conclusion, FTIR microspectroscopy proved to be an accurate and informative technique, suitable to highlight profound differences among S. cerevisiae strains as concerns both the content of parietal polysaccharides and the evolution of autolysis. Thus, this technique may become an option for the selection of starter cultures with properties fo great interest for the wine sector.

References

[1] Burattini, E., Cavagna, M., Dell’Anna, R., Malvezzi Campeggi, F., Monti, F., Rossi, F., & Torriani, S. (2008). A FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vibrational Spectroscopy, 47(2), 139-147. https://doi.org/10.1016/j.vibspec.2008.04.007.
[2] Cavagna, M., Dell’Anna, R., Monti, F., Rossi, F., & Torriani, S. (2010). Use of ATR-FTIR microspectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a base wine. Journal of Agricultural and Food Chemistry, 58(1), 39–45. https://doi.org/10.1021/jf902369s.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Binati Renato Leal1, Monti Francesca2, Felis Giovanna1 and Torriani Sandra1

1Department of Biotechnology, University of Verona 
2Department of Computer Science, University of Verona

Contact the author

Keywords

FTIR microspectroscopy; starter cultures; Saccharomyces cerevisiae; autolysis; wine quality

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.

Impact of harvest date on the terroir expression and the aroma profile of Touraine Sauvignon wines

L’objectif d’une étude sur trois années vise, pour des terroirs différents et connus pour le profil des vins qui en sont issus, à exploiter au mieux le potentiel des raisins en optimisant la date de récolte ; pour chacun des trois terroirs, les minivinifications sont réalisées à partir de trois dates de récolte . Il s’avère, grâce à un suivi analytique important (sol, précurseurs et arômes) et une caractérisation organoleptique bien encadrée (analyse sensorielle pertinente et objective), que le choix de la date de récolte, en fonction du terroir, a une incidence sur le profil du vin et devient un outil pour l’élaborateur.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations.