IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Abstract

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae. After cell death, autolysis trigger the release of mannoproteins and β-glucans, major components of yeast cell walls, influencing color, aroma, body, foaming properties, and stability of wine. Moreover, they can stimulate the metabolism of malolactic bacteria, while some fatty acids, also released during autolysis, act as inhibitors. Analysis of the cell wall structure was carried out both on cells grown in liquid medium and on cell walls previously separated from the other components. The autolytic capacity was assayed by sampling the cells at different times during induced autolysis in clarified and pasteurized must. From five to ten infrared spectra were acquired on each sample in the 4,000-700 cm-1 range in Attenuated Total Reflection on a 50×50 μm2 area. Spectra were analyzed after pretreatment through Hierarchical Cluster Analysis and Principal Component Analysis. Preliminary results were evaluated in relation to conventional spectrophotometric methods to quantify mannoproteins and β-glucans. The thickness of the cell walls was determined by means of scanning (SEM) and transmission electron microscopy (TEM). From the point of view of cell wall composition two groups of yeasts were distinguished by multivariate statistical analysis on the FTIR spectra since the strains EC1118, MY11 and PEDRO2000E showed higher absorption bands of mannoproteins and β-glucans. With conventional methods, the cell walls of the first two strains, alongside K1 and MY8, displayed a higher content of parietal polysaccharides, while the latter had the thickest wall among all the tested yeasts. The strains BM45 and D47 have a thinner surface structure. Regarding the autolytic process, again two different clusters were found distinguishing the behavior of the strains EC1118 and FRB with a similar timing of autolysis on one side from CH and Q20 on the other side. Furthermore, the latter strain presented a higher absorption in the spectral zone related to lipids, which can be correlated with a greater release of fatty acids in the medium. In conclusion, FTIR microspectroscopy proved to be an accurate and informative technique, suitable to highlight profound differences among S. cerevisiae strains as concerns both the content of parietal polysaccharides and the evolution of autolysis. Thus, this technique may become an option for the selection of starter cultures with properties fo great interest for the wine sector.

References

[1] Burattini, E., Cavagna, M., Dell’Anna, R., Malvezzi Campeggi, F., Monti, F., Rossi, F., & Torriani, S. (2008). A FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vibrational Spectroscopy, 47(2), 139-147. https://doi.org/10.1016/j.vibspec.2008.04.007.
[2] Cavagna, M., Dell’Anna, R., Monti, F., Rossi, F., & Torriani, S. (2010). Use of ATR-FTIR microspectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a base wine. Journal of Agricultural and Food Chemistry, 58(1), 39–45. https://doi.org/10.1021/jf902369s.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Binati Renato Leal1, Monti Francesca2, Felis Giovanna1 and Torriani Sandra1

1Department of Biotechnology, University of Verona 
2Department of Computer Science, University of Verona

Contact the author

Keywords

FTIR microspectroscopy; starter cultures; Saccharomyces cerevisiae; autolysis; wine quality

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Cépage “Baga” région Bairrada. 2- De la conduite traditionnelle jusqu’au système ‘Lys’

Dans la Région de la Bairrada (Litoral-Centre du Portugal), on a étudié au 1999, l’influence des différents systèmes de conduite sur le cépage rouge “Baga”, le plus important de la Région.

Multidisciplinary assessment of selective harvesting in the Colli Piacentini wine district

Within-field variability can be managed through Precision Viticulture (PV) protocols aiming at identifying homogeneous zones and addressing site-specific operations including selective harvesting (SH). Several authors demonstrated SH profitability in extensive viticulture while few information is available within the Italian context.

Terroir et marché : exemples de stratégie pour les vins d’une petite région (Muscadet – Anjou – Touraine)

The designations of origin of the Loire Valley wine have been recognized according to customs and notoriety established over the centuries since the Middle Ages. There are four main production basins going up the Loire, from Nantes to the Sancerrois region: Nantes, Anjou-Saumur, Touraine and the vineyards of the Centre. In each of these basins, there is a wide range of appellations of origin which has been established according to a logic which may not seem obvious to the uninformed.

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.

Immunotestπ: a new test for the determination of proteic stability in white and rosé wines

Proteic haze is a problem which may occur in all fruit-based beverages and fermented juices (beer, cider, wine). When it occurs, the economic loss is important.