IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Abstract

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae. After cell death, autolysis trigger the release of mannoproteins and β-glucans, major components of yeast cell walls, influencing color, aroma, body, foaming properties, and stability of wine. Moreover, they can stimulate the metabolism of malolactic bacteria, while some fatty acids, also released during autolysis, act as inhibitors. Analysis of the cell wall structure was carried out both on cells grown in liquid medium and on cell walls previously separated from the other components. The autolytic capacity was assayed by sampling the cells at different times during induced autolysis in clarified and pasteurized must. From five to ten infrared spectra were acquired on each sample in the 4,000-700 cm-1 range in Attenuated Total Reflection on a 50×50 μm2 area. Spectra were analyzed after pretreatment through Hierarchical Cluster Analysis and Principal Component Analysis. Preliminary results were evaluated in relation to conventional spectrophotometric methods to quantify mannoproteins and β-glucans. The thickness of the cell walls was determined by means of scanning (SEM) and transmission electron microscopy (TEM). From the point of view of cell wall composition two groups of yeasts were distinguished by multivariate statistical analysis on the FTIR spectra since the strains EC1118, MY11 and PEDRO2000E showed higher absorption bands of mannoproteins and β-glucans. With conventional methods, the cell walls of the first two strains, alongside K1 and MY8, displayed a higher content of parietal polysaccharides, while the latter had the thickest wall among all the tested yeasts. The strains BM45 and D47 have a thinner surface structure. Regarding the autolytic process, again two different clusters were found distinguishing the behavior of the strains EC1118 and FRB with a similar timing of autolysis on one side from CH and Q20 on the other side. Furthermore, the latter strain presented a higher absorption in the spectral zone related to lipids, which can be correlated with a greater release of fatty acids in the medium. In conclusion, FTIR microspectroscopy proved to be an accurate and informative technique, suitable to highlight profound differences among S. cerevisiae strains as concerns both the content of parietal polysaccharides and the evolution of autolysis. Thus, this technique may become an option for the selection of starter cultures with properties fo great interest for the wine sector.

References

[1] Burattini, E., Cavagna, M., Dell’Anna, R., Malvezzi Campeggi, F., Monti, F., Rossi, F., & Torriani, S. (2008). A FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vibrational Spectroscopy, 47(2), 139-147. https://doi.org/10.1016/j.vibspec.2008.04.007.
[2] Cavagna, M., Dell’Anna, R., Monti, F., Rossi, F., & Torriani, S. (2010). Use of ATR-FTIR microspectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a base wine. Journal of Agricultural and Food Chemistry, 58(1), 39–45. https://doi.org/10.1021/jf902369s.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Binati Renato Leal1, Monti Francesca2, Felis Giovanna1 and Torriani Sandra1

1Department of Biotechnology, University of Verona 
2Department of Computer Science, University of Verona

Contact the author

Keywords

FTIR microspectroscopy; starter cultures; Saccharomyces cerevisiae; autolysis; wine quality

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influenza del sito di coltivazione nella espressione aromatica del Moscato liquoroso di Pantelleria

ln 1997, twenty six cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through ail Pantelleria isle. ln each site, described and classified according to USDA Soil Taxonony and FAO Soil Classification methods, grapes, collected at technological ripening, were microvinificated, following a standard procedure which allowed to obtain the naturally sweet wine DOC Moscato di Pantelleria. Wines, five months after vinification, were analysed by gaschromatography.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Commercial red wines use the malolactic fermentation process to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled steps.

Estudio comparativo del potencial enológico de dos varietales tintos cultivados en la isla de Tenerife

En el presente trabajo se ha realizado un estudio comparativo entre los varietales tintos Listán negro y Negramolle en la Denominación de Origen Tacoronte-Acentejo. Se han determinado durante dos años

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].