IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Abstract

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae. After cell death, autolysis trigger the release of mannoproteins and β-glucans, major components of yeast cell walls, influencing color, aroma, body, foaming properties, and stability of wine. Moreover, they can stimulate the metabolism of malolactic bacteria, while some fatty acids, also released during autolysis, act as inhibitors. Analysis of the cell wall structure was carried out both on cells grown in liquid medium and on cell walls previously separated from the other components. The autolytic capacity was assayed by sampling the cells at different times during induced autolysis in clarified and pasteurized must. From five to ten infrared spectra were acquired on each sample in the 4,000-700 cm-1 range in Attenuated Total Reflection on a 50×50 μm2 area. Spectra were analyzed after pretreatment through Hierarchical Cluster Analysis and Principal Component Analysis. Preliminary results were evaluated in relation to conventional spectrophotometric methods to quantify mannoproteins and β-glucans. The thickness of the cell walls was determined by means of scanning (SEM) and transmission electron microscopy (TEM). From the point of view of cell wall composition two groups of yeasts were distinguished by multivariate statistical analysis on the FTIR spectra since the strains EC1118, MY11 and PEDRO2000E showed higher absorption bands of mannoproteins and β-glucans. With conventional methods, the cell walls of the first two strains, alongside K1 and MY8, displayed a higher content of parietal polysaccharides, while the latter had the thickest wall among all the tested yeasts. The strains BM45 and D47 have a thinner surface structure. Regarding the autolytic process, again two different clusters were found distinguishing the behavior of the strains EC1118 and FRB with a similar timing of autolysis on one side from CH and Q20 on the other side. Furthermore, the latter strain presented a higher absorption in the spectral zone related to lipids, which can be correlated with a greater release of fatty acids in the medium. In conclusion, FTIR microspectroscopy proved to be an accurate and informative technique, suitable to highlight profound differences among S. cerevisiae strains as concerns both the content of parietal polysaccharides and the evolution of autolysis. Thus, this technique may become an option for the selection of starter cultures with properties fo great interest for the wine sector.

References

[1] Burattini, E., Cavagna, M., Dell’Anna, R., Malvezzi Campeggi, F., Monti, F., Rossi, F., & Torriani, S. (2008). A FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vibrational Spectroscopy, 47(2), 139-147. https://doi.org/10.1016/j.vibspec.2008.04.007.
[2] Cavagna, M., Dell’Anna, R., Monti, F., Rossi, F., & Torriani, S. (2010). Use of ATR-FTIR microspectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a base wine. Journal of Agricultural and Food Chemistry, 58(1), 39–45. https://doi.org/10.1021/jf902369s.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Binati Renato Leal1, Monti Francesca2, Felis Giovanna1 and Torriani Sandra1

1Department of Biotechnology, University of Verona 
2Department of Computer Science, University of Verona

Contact the author

Keywords

FTIR microspectroscopy; starter cultures; Saccharomyces cerevisiae; autolysis; wine quality

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

AIM: Previous research on the fruity character of red wines highlighted the role of esters [1]. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall fruity aroma of wine, contributing to a masking effect [2][3]. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

La région viticole de Mendoza est la principale zone vitivinicole d’Argentine qui se compose de 3 oasis (Nord, Valle de Uco, Sud). La première zone vitivinicole, située dans l’oasis Nord, est composée par les département de Luján de Cuyo et Maipu. C’est la zone de production la plus ancienne et la plus reconnue pour la qualité de sa production. Ce travail se porte plus particulièrement sur le département de Luján de Cuyo qui constitue le lieu traditionnel de production du Malbec argertin. Ce travail propose de caractériser les terroirs et de mettre en avant leurs typicités.

Dimethyl sulfide transfer through wine closures during bottle aging: implications for wine aroma management

Dimethyl sulfide (DMS) is a volatile sulfur compound with a complex role in wine aroma, contributing both desirable and undesirable sensory characteristics depending on its concentration (1).

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.