terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Understanding the complexity of grapevine winter physiology in the face of changing climate

Understanding the complexity of grapevine winter physiology in the face of changing climate


Context and purpose of the study – The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines.  In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Material and methods – Cold hardiness ability can be assessed for dormant buds of grapevine using a method called differential thermal analysis, or DTA. Using this method, we can measure the precise temperature which results in the death of the primary reproductive bud. We monitor the cold hardiness of V. vinifera and North American adapted varieties weekly throughout winter to track changes in cold hardiness. We measure the impact of decreasing fall temperatures on the vines ability to acclimate to cold using growth chamber studies to simulate different winter conditions. Additionally, we collect data on the resistance of these buds to warm temperatures in order to develop risk models associated with early budbreak phenology. 

Results – Our studies have revealed many new insights into the processes of winter physiology of the dormant bud. Examining the impact on decreasing winter temperatures have revealed a key requirement for daily temperature oscillation for acclimation, or the gaining of cold hardiness in early winter. Patterns of midwinter cold hardiness across several years demonstrated clear differences between V. vinifera and North American adapted cultivars, with adapted cultivars superior in winter hardiness. Deacclimation studies have revealed that these same adapted cultivars are also much more responsive to late winter warming, making them more risky for early spring frosts. When combined, this data has enabled us to build predictive models for cold hardiness and bud phenology that are more accurate the current methods. These models should allow us to determine which regions, and which cultivars, are risky as climate warms around us.  


Publication date: June 21, 2023

Issue: GiESCO 2023

Type: Article



1School of Integrative Plant Science : Horticulture, Cornell University
2Department of Horticulture, University of Wisconsin-Madison

Contact the author*


grapevine, cold hardiness, chilling requirement, climate change, winter physiology


GiESCO | GIESCO 2023 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.