terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Counting grape bunches using deep learning under different fruit and leaf occlusion conditions

Counting grape bunches using deep learning under different fruit and leaf occlusion conditions

Introduction

Yield estimation is very important for the wine industry since provides useful information for vineyard and winery management. The early yield estimation of the grapevine provides information to winegrowers in making management decisions to achieve a better quantity and quality of grapes. In general, yield forecasts are based on destructive sampling of bunches and manual counting of berries per bunch and bunches per vine. This traditional approach does not provide accurate estimations because the sample of the vineyard cannot represent all the variability that may be present in the plot. These techniques are time-consuming, expensive, and labour-intensive (Martin et al., 2003). The number of bunches per vine is the most important of the yield components, explaining 60% of average field yield variability, while the number of berries per bunch explains 30% and berry weight explains 10% (Laurent et al., 2021). In this regard, precision viticulture has brought new opportunities for yield monitoring and prediction, taking advantage of the new sensors, platforms, and modelling techniques.

Nowadays one of the most common and successful techniques for monitoring the amount of fruit in viticulture has been computer vision. Several applications and methods have been reported in the scientific literature (Mohimont et al., 2022). Computer vision systems have been used to estimate grapevine yield at different phenological stages, such as budbreak (Liu et al., 2017), flowering (Palacios et al., 2020), pea-size (Palacios et al., 2022), and harvest (Xin et al., 2020). The computer vision techniques used for bunch detection are mainly classified into three classes: i) colour-based thresholding and colour features (Hacking et al., 2020), ii) active contour segmentation (Xiong, 2018), and ii) pixels segmentation (Íñiguez et al., 2021). In general, computer vision has shown good results for bunch detection; however, the results of these techniques are highly influenced by image acquisition conditions such as background effects and light conditions and intrinsic conditions of the grape canopies such as bunch occlusion (Íñiguez et al. 2021). In this context, new artificial intelligence techniques can help us to solve these problems. Deep learning methods have proved to be very effective in object detection (Fuentes, 2017). This novel technique has shown promising results for bunch detection and counting in grapevines (Sozzi et al., 2022).

DOI:

Publication date: June 30, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Rubén ÍÑIGUEZ1,2, Carlos POBLETE- ECHEVERRIA1,2, Inés HERNÁNDEZ1,2, Salvador GUTIÉRREZ3, Ignacio BARRIO1,2 and Javier TARDÁGUILA1,2*

1Televitis Research Group, University of La Rioja, 26006 Logroño, Spain
2Institute of Grapevine and Wine Sciences (University of La Rioja, Consejo Superior de Investigaciones Científicas, Gobierno de La Rioja), 26007 Logroño, Spain
3Department of Computer Science and Artificial Intelligence (DECSAI), Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada (UGR), 18071 Granada, Spain

Contact the author*

Keywords

artificial intelligence, yield estimation, YOLO, precision viticulture, object detection

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Grape and wine quality of terraced local variety Pinela (Vitis vinifera L.) under different water management

Climate change is driving global temperatures up together with a reduction of rainfall, posing a risk to grape yields, wine quality, and threatening the historical viticulture areas of Europe.

Synthesis of scientific research on the application of mechanized grapevine pruning in the Republic of Moldova

One of the basic problems in the viticulture branch is the improvement of perspective technologies for both vine training systems: with vertical standing and with free position of shoots, adapted to the requirements of complex mechanization.

French regulations related to vineyard spraying and examples of devices developed in France and around the world to limit the risks of point-source pollution

Managing pests in vineyards presents a major challenge for winegrowers, who are seeking effective solutions to control diseases and pests.

Analyzing firms’ dynamic capabilities to identify the actions for a sustainable future of the Italian wine sector

The UN Agenda 2030 for Sustainable Development, a global plan for a better future, requires actions.

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.