Macrowine 2021
IVES 9 IVES Conference Series 9 Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Abstract

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy). Micro-meteorological survey, carpological characterization, chemical analysis and transcriptional studies were carried out to clarify the anthocyanin biosynthesis regulation. Air and grape temperatures and global solar radiation inside the canopy where measured during the season. Grape samples were collected at seven stages of berry development from pre-véraison until harvest. Berry growth was followed by both weight and volume increases. At veraison, anthocyanin quantification, by spectroscopy, and profile composition analysis, by HPLC, started (5 developmental stages were analyzed). The expression level of structural and regulatory genes of anthocyanin pathway was studied via real time polymerase chain reaction during all the seven development stages considered. Even if the vineyards are close each other the different training systems (“Guyot” and “Pergola”) created different microclimates for grape ripening. As an example, in “Pergola” the grape temperatures rarely exceeded 40°C. On the opposite, in “Guyot” the temperatures rise over 59°C in hottest days, and often overpassed 50°C. Despite these differences, the anthocyanin profile similarly changed during ripening among the two vineyards. At color appearance (average anthocyanin content: 80 mg kg-1 of grapes), the di-substituted anthocyanins prevailed. During ripening, it was possible to observe a progressive increase of tri-substituted, methoxylated, and acylated pigments. The transcriptional levels of “Guyot” and “Pergola” confirmed to be similar. A clear correlation among expression of anthocyanin biosynthetic gene UDPglucose:flavonoid 3-O-glucosyltransferase (UFGT), transcription factors, MYBA1 and MYBA2, and total anthocyanin content during berry development has been identified. Chalcone synthase, flavonoid 3ʹ-hydroxylase (F3ʹH) and flavonoid 3ʹ,5ʹ-hydroxylase (F3ʹ5ʹH) genes of the flavonoid pathway showed high correlation as well. The proportion changes between tri- and di-substituted anthocyaninswas associated with an increasing ratio of F3ʹ5ʹH/F3ʹH gene transcription during ripening. The AOMT genes were expressed with a maximum at the onset of ripening, coherently with the rapid increase of methoxylated anthocyanin proportion in this stage. Detailed knowledges of grape color variations during ripening could support the vineyard management techniques including harvesting time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Laura Rustioni*, Federica Zoli, Gabriella De Lorenzis, Lucio Brancadoro, Simone Parisi

*Università di Milano

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.