Macrowine 2021
IVES 9 IVES Conference Series 9 Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Abstract

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy). Micro-meteorological survey, carpological characterization, chemical analysis and transcriptional studies were carried out to clarify the anthocyanin biosynthesis regulation. Air and grape temperatures and global solar radiation inside the canopy where measured during the season. Grape samples were collected at seven stages of berry development from pre-véraison until harvest. Berry growth was followed by both weight and volume increases. At veraison, anthocyanin quantification, by spectroscopy, and profile composition analysis, by HPLC, started (5 developmental stages were analyzed). The expression level of structural and regulatory genes of anthocyanin pathway was studied via real time polymerase chain reaction during all the seven development stages considered. Even if the vineyards are close each other the different training systems (“Guyot” and “Pergola”) created different microclimates for grape ripening. As an example, in “Pergola” the grape temperatures rarely exceeded 40°C. On the opposite, in “Guyot” the temperatures rise over 59°C in hottest days, and often overpassed 50°C. Despite these differences, the anthocyanin profile similarly changed during ripening among the two vineyards. At color appearance (average anthocyanin content: 80 mg kg-1 of grapes), the di-substituted anthocyanins prevailed. During ripening, it was possible to observe a progressive increase of tri-substituted, methoxylated, and acylated pigments. The transcriptional levels of “Guyot” and “Pergola” confirmed to be similar. A clear correlation among expression of anthocyanin biosynthetic gene UDPglucose:flavonoid 3-O-glucosyltransferase (UFGT), transcription factors, MYBA1 and MYBA2, and total anthocyanin content during berry development has been identified. Chalcone synthase, flavonoid 3ʹ-hydroxylase (F3ʹH) and flavonoid 3ʹ,5ʹ-hydroxylase (F3ʹ5ʹH) genes of the flavonoid pathway showed high correlation as well. The proportion changes between tri- and di-substituted anthocyaninswas associated with an increasing ratio of F3ʹ5ʹH/F3ʹH gene transcription during ripening. The AOMT genes were expressed with a maximum at the onset of ripening, coherently with the rapid increase of methoxylated anthocyanin proportion in this stage. Detailed knowledges of grape color variations during ripening could support the vineyard management techniques including harvesting time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Laura Rustioni*, Federica Zoli, Gabriella De Lorenzis, Lucio Brancadoro, Simone Parisi

*Università di Milano

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.