Macrowine 2021
IVES 9 IVES Conference Series 9 Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Abstract

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy). Micro-meteorological survey, carpological characterization, chemical analysis and transcriptional studies were carried out to clarify the anthocyanin biosynthesis regulation. Air and grape temperatures and global solar radiation inside the canopy where measured during the season. Grape samples were collected at seven stages of berry development from pre-véraison until harvest. Berry growth was followed by both weight and volume increases. At veraison, anthocyanin quantification, by spectroscopy, and profile composition analysis, by HPLC, started (5 developmental stages were analyzed). The expression level of structural and regulatory genes of anthocyanin pathway was studied via real time polymerase chain reaction during all the seven development stages considered. Even if the vineyards are close each other the different training systems (“Guyot” and “Pergola”) created different microclimates for grape ripening. As an example, in “Pergola” the grape temperatures rarely exceeded 40°C. On the opposite, in “Guyot” the temperatures rise over 59°C in hottest days, and often overpassed 50°C. Despite these differences, the anthocyanin profile similarly changed during ripening among the two vineyards. At color appearance (average anthocyanin content: 80 mg kg-1 of grapes), the di-substituted anthocyanins prevailed. During ripening, it was possible to observe a progressive increase of tri-substituted, methoxylated, and acylated pigments. The transcriptional levels of “Guyot” and “Pergola” confirmed to be similar. A clear correlation among expression of anthocyanin biosynthetic gene UDPglucose:flavonoid 3-O-glucosyltransferase (UFGT), transcription factors, MYBA1 and MYBA2, and total anthocyanin content during berry development has been identified. Chalcone synthase, flavonoid 3ʹ-hydroxylase (F3ʹH) and flavonoid 3ʹ,5ʹ-hydroxylase (F3ʹ5ʹH) genes of the flavonoid pathway showed high correlation as well. The proportion changes between tri- and di-substituted anthocyaninswas associated with an increasing ratio of F3ʹ5ʹH/F3ʹH gene transcription during ripening. The AOMT genes were expressed with a maximum at the onset of ripening, coherently with the rapid increase of methoxylated anthocyanin proportion in this stage. Detailed knowledges of grape color variations during ripening could support the vineyard management techniques including harvesting time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Laura Rustioni*, Federica Zoli, Gabriella De Lorenzis, Lucio Brancadoro, Simone Parisi

*Università di Milano

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).