Terroir 2012 banner
IVES 9 IVES Conference Series 9 Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Abstract

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management. They control the type of product that can be developed, providing adapted winemaking techniques.
Due to the high variability of each of the Terroir components, predicting the grape oenological potentialities (and consequently the final product potential) is challenging.
To address this problem, we propose here a statistical method based upon multifactorial analysis. The method was established using of data set collected from 2005 to 2011, on a network of 13 plots of cv Merlot in the Bordeaux winegrowing region. This approach showed that Terroir reacted differently to year-to-year climate variability. Some plots provided a high oenological potential for most of the vintages whereas other were very sensitive to climate variations. When applied to Burgundy, on cv Pinot and Chardonnay (11 and 8 plots, respectively) from 2000 to 2010, similar conclusion were reached.
This multifactorial analysis approach proposed here is an efficient tool to characterize the oenological potential of Terroirs. Such potential could be estimated prior to harvest, knowing the major feature of the vintage by means of climate indices.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Maud-Isabeau FURET (1), Maxime CHRISTEN (1), Anne-Charlotte MONTEAU (2), Christine MONAMY (2), Benjamin BOIS (3), Pascal GUILBAULT (1)

(1) Chambre d’Agriculture de la Gironde, Vinopôle Bordeaux-Aquitaine, 39 rue Michel Montaigne, 33294 Blanquefort, France
(2) BIVB, Pôle Technique et Qualité, 6 rue du 16ème Chasseurs, 21200 BEAUNE, France
(3) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6, boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

grape oenological potential, terroir components, climate, vintage effect, plot effect, agronomic filter. Mots-clés : potentialités œnologiques de la récolte, composantes du terroir, climat, effets millésime, effet parcelle, filtre agronomique.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

Composition and biological potential of grape and wine phenolic compounds

Polyphenols are common in human diets, primarily in plant-derived food and beverages. They influence multiple sensory properties such as aroma, flavour, colour, and taste, such as astringency and bitterness [1]. The major phenolic compounds in grapes and wines are anthocyanins and tannins (proanthocyanidins or condensed tannins).

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

The French grapevine breeding program resdur: state of the art and perspectives

The French grapevine breeding program for durable resistance to downy and powdery mildew (INRAE-ResDur) was initiated more than 20 years ago to help reduce the heavy use of plant protection products and provide a durable mean to cope with a strong pathogen pressure. This program has now proved to be effective, with about ten new varieties already officially registered. However, there is still a lot to be done (1) to reduce the duration of each breeding cycle, (2) to diversify disease factors’ pyramiding and anticipate emerging diseases, (3) to work towards larger adoption of the new resistant varieties. New breeding schemes incorporating for example genomic prediction of breeding values are being evaluated to accelerate genetic gains, saving cost and time while handling complex traits.