Terroir 2012 banner
IVES 9 IVES Conference Series 9 Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Abstract

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management. They control the type of product that can be developed, providing adapted winemaking techniques.
Due to the high variability of each of the Terroir components, predicting the grape oenological potentialities (and consequently the final product potential) is challenging.
To address this problem, we propose here a statistical method based upon multifactorial analysis. The method was established using of data set collected from 2005 to 2011, on a network of 13 plots of cv Merlot in the Bordeaux winegrowing region. This approach showed that Terroir reacted differently to year-to-year climate variability. Some plots provided a high oenological potential for most of the vintages whereas other were very sensitive to climate variations. When applied to Burgundy, on cv Pinot and Chardonnay (11 and 8 plots, respectively) from 2000 to 2010, similar conclusion were reached.
This multifactorial analysis approach proposed here is an efficient tool to characterize the oenological potential of Terroirs. Such potential could be estimated prior to harvest, knowing the major feature of the vintage by means of climate indices.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Maud-Isabeau FURET (1), Maxime CHRISTEN (1), Anne-Charlotte MONTEAU (2), Christine MONAMY (2), Benjamin BOIS (3), Pascal GUILBAULT (1)

(1) Chambre d’Agriculture de la Gironde, Vinopôle Bordeaux-Aquitaine, 39 rue Michel Montaigne, 33294 Blanquefort, France
(2) BIVB, Pôle Technique et Qualité, 6 rue du 16ème Chasseurs, 21200 BEAUNE, France
(3) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6, boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

grape oenological potential, terroir components, climate, vintage effect, plot effect, agronomic filter. Mots-clés : potentialités œnologiques de la récolte, composantes du terroir, climat, effets millésime, effet parcelle, filtre agronomique.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Agronomic and oenological characterization of the intraspecific cross ‘Passau’ in the aim of its commercial use

The study of new wine grape cultivars can be interesting to diversify the local wine productions without using international varieties. With this aim some Vitis vinifera intraspecific crosses obtained by Prof. Dalmasso in the 1930s and registered in the Italian National Catalogue in 1977, have been studied in the last years.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.