Terroir 2012 banner
IVES 9 IVES Conference Series 9 Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Abstract

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management. They control the type of product that can be developed, providing adapted winemaking techniques.
Due to the high variability of each of the Terroir components, predicting the grape oenological potentialities (and consequently the final product potential) is challenging.
To address this problem, we propose here a statistical method based upon multifactorial analysis. The method was established using of data set collected from 2005 to 2011, on a network of 13 plots of cv Merlot in the Bordeaux winegrowing region. This approach showed that Terroir reacted differently to year-to-year climate variability. Some plots provided a high oenological potential for most of the vintages whereas other were very sensitive to climate variations. When applied to Burgundy, on cv Pinot and Chardonnay (11 and 8 plots, respectively) from 2000 to 2010, similar conclusion were reached.
This multifactorial analysis approach proposed here is an efficient tool to characterize the oenological potential of Terroirs. Such potential could be estimated prior to harvest, knowing the major feature of the vintage by means of climate indices.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Maud-Isabeau FURET (1), Maxime CHRISTEN (1), Anne-Charlotte MONTEAU (2), Christine MONAMY (2), Benjamin BOIS (3), Pascal GUILBAULT (1)

(1) Chambre d’Agriculture de la Gironde, Vinopôle Bordeaux-Aquitaine, 39 rue Michel Montaigne, 33294 Blanquefort, France
(2) BIVB, Pôle Technique et Qualité, 6 rue du 16ème Chasseurs, 21200 BEAUNE, France
(3) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6, boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

grape oenological potential, terroir components, climate, vintage effect, plot effect, agronomic filter. Mots-clés : potentialités œnologiques de la récolte, composantes du terroir, climat, effets millésime, effet parcelle, filtre agronomique.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

he use of high-power ultrasound (US) is proving of great interest to the oenological industry due to its effects in the improvement of wine organoleptic characteristics, especially in terms of color [1, 2].

Metabolomics of Vitis davidii Foëx. grapes from southern China: Flavonoids and volatiles reveal the flavor profiles of five spine grape varieties

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of these compounds highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and free norisprenoids (2.60 to 11.46 μg/kg FW).

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.