Terroir 2012 banner
IVES 9 IVES Conference Series 9 Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Abstract

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management. They control the type of product that can be developed, providing adapted winemaking techniques.
Due to the high variability of each of the Terroir components, predicting the grape oenological potentialities (and consequently the final product potential) is challenging.
To address this problem, we propose here a statistical method based upon multifactorial analysis. The method was established using of data set collected from 2005 to 2011, on a network of 13 plots of cv Merlot in the Bordeaux winegrowing region. This approach showed that Terroir reacted differently to year-to-year climate variability. Some plots provided a high oenological potential for most of the vintages whereas other were very sensitive to climate variations. When applied to Burgundy, on cv Pinot and Chardonnay (11 and 8 plots, respectively) from 2000 to 2010, similar conclusion were reached.
This multifactorial analysis approach proposed here is an efficient tool to characterize the oenological potential of Terroirs. Such potential could be estimated prior to harvest, knowing the major feature of the vintage by means of climate indices.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Maud-Isabeau FURET (1), Maxime CHRISTEN (1), Anne-Charlotte MONTEAU (2), Christine MONAMY (2), Benjamin BOIS (3), Pascal GUILBAULT (1)

(1) Chambre d’Agriculture de la Gironde, Vinopôle Bordeaux-Aquitaine, 39 rue Michel Montaigne, 33294 Blanquefort, France
(2) BIVB, Pôle Technique et Qualité, 6 rue du 16ème Chasseurs, 21200 BEAUNE, France
(3) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6, boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

grape oenological potential, terroir components, climate, vintage effect, plot effect, agronomic filter. Mots-clés : potentialités œnologiques de la récolte, composantes du terroir, climat, effets millésime, effet parcelle, filtre agronomique.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

How do we describe wine imagery? Expertise shapes language usage and multimodal imagery for wine

The acquisition of wine expertise is a multi-faceted and multisensory process with implications for sensory perception, attention, memory, and language production. With the prevalence of the predictive model of brain functioning, one area of burgeoning research interest involves wine mental imagery, since the brain relies on imagined experiences to build predictions for the future. Recent evidence has shown that, for instance, those with higher imagery vividness are more susceptible to wine advertising. However, little is known about the association between mental imagery and other associated cognitive processes, such as the ability to produce words that describe such imagery. 

Phenolic and volatile profiles of south tyrolean pinot blanc musts and young wines

AIM. Assess the impact of different vineyards and winemaking variables on the phenolic and volatile profiles of Pinot Blanc musts and young wines from South Tyrol.

Future scenarios for viticultural climatic zoning in Europe

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae.

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.