Terroir 2012 banner
IVES 9 IVES Conference Series 9 Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

Abstract

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management. They control the type of product that can be developed, providing adapted winemaking techniques.
Due to the high variability of each of the Terroir components, predicting the grape oenological potentialities (and consequently the final product potential) is challenging.
To address this problem, we propose here a statistical method based upon multifactorial analysis. The method was established using of data set collected from 2005 to 2011, on a network of 13 plots of cv Merlot in the Bordeaux winegrowing region. This approach showed that Terroir reacted differently to year-to-year climate variability. Some plots provided a high oenological potential for most of the vintages whereas other were very sensitive to climate variations. When applied to Burgundy, on cv Pinot and Chardonnay (11 and 8 plots, respectively) from 2000 to 2010, similar conclusion were reached.
This multifactorial analysis approach proposed here is an efficient tool to characterize the oenological potential of Terroirs. Such potential could be estimated prior to harvest, knowing the major feature of the vintage by means of climate indices.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Maud-Isabeau FURET (1), Maxime CHRISTEN (1), Anne-Charlotte MONTEAU (2), Christine MONAMY (2), Benjamin BOIS (3), Pascal GUILBAULT (1)

(1) Chambre d’Agriculture de la Gironde, Vinopôle Bordeaux-Aquitaine, 39 rue Michel Montaigne, 33294 Blanquefort, France
(2) BIVB, Pôle Technique et Qualité, 6 rue du 16ème Chasseurs, 21200 BEAUNE, France
(3) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6, boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

grape oenological potential, terroir components, climate, vintage effect, plot effect, agronomic filter. Mots-clés : potentialités œnologiques de la récolte, composantes du terroir, climat, effets millésime, effet parcelle, filtre agronomique.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Context and purpose of the study ‐ Recently early defoliation (ED) has been tested in several high‐ yielding grapevine varieties and sites aiming at reducing cluster compactness and hence, regulating yield and susceptibility to botrytis bunch rot infection. The reported results have been generally positive, encouraging growers to use this canopy management technique as an alternative for replacing the conventional time‐consuming cluster thinning and, simultaneously, as a sustainable practice to reduce the use of fungicides. However, ED increases berry sunburn risks and/or can induce carry‐over effects on vigor and node fruitfulness as shown in the two case studies reported in this work.

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante.

A new approach for sensory characterization of grape. Relationship with chemical composition

Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables. METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology. RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated.

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.