Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

Abstract

AIM: “Pinking” is a term used to define an abnormal pink coloration assumed by white wines in certain cases. Despite the are many hypotheses about the causes of this phenomenon, pinking still represents an issue for the wine industry. In the absence of reliable preventive strategies, wineries often rely on treatments such as charcoal fining, which is also negatively impacting wine aroma. This study aims at evaluating the potential of different fining agents based on animal or vegetal proteins to prevent wine pinking when applied at the level of must clarification. The work was carried out on Lugana wines, which is well-recognised as sensible to pinking problems.

METHODS: Two experimental Lugana musts were obtained by applying a standard winemaking protocol and were then clarified with different commercial preparations based on vegetal proteins or casein, alone or in combination with PVPP. A control only using pectolytic enzyme was also prepared. Finings were carried out at 4°C for 16h, and the clear must (200 NTU) was then fermented in controlled conditions. At the end of fermentation all wines were bottled with 25 mg/L of free SO2. Musts and wines were submitted to linear sweep voltammetry, colorimetric (CIELab) and spectrophotometric analyses. Pinking was assessed by CIELab.

RESULTS: Must fining with products based on combination of vegetable proteins and PVPP allowed significant reduction of must content in oxidizable compounds assessed by voltammetry, and this difference was still detected in the finished wines. After one month of bottle aging (free SO2 being 20 mg/L in all wines) pinking was detected for all wines except for those obtained from musts treated with potato or pea protein combined with PVPP. Voltammetric features of the must were shown to be well correlated with the risk of wine pinking. Analysis after one year of bottle aging confirmed the potential of fining to prevent pinking.

CONCLUSIONS: The type of fining agent used in must fining affects the occurrence of pinking in the finished wines. Vegetable proteins in combination with PVPP showed high potential for pinking prevention. Voltammetric analyses could be a promising tool for rapid assessment of the efficacy of fining treatments towards pinking.

ACKNOWLEDGMENTS:

The present work was financially supported by Biolaffort.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Ugliano 1, Riccardo MANARA 1,  Eduardo VELA ROMAN 1, Virginie MOINE 1, Arnaud MASSOT 2, Davide SLAGHENAUFI 2.

1 University of Verona, Italy.
2 Biolaffort, France.

Contact the author

Keywords

pinking, fining, vegetable proteins, linear sweep voltammetry

Citation

Related articles…

Simulating the effect of heat waves on disease-resistant varieties

Agro-ecological transition and adaptation to climate change are the two major challenges facing modern agriculture.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.