Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

Abstract

AIM: “Pinking” is a term used to define an abnormal pink coloration assumed by white wines in certain cases. Despite the are many hypotheses about the causes of this phenomenon, pinking still represents an issue for the wine industry. In the absence of reliable preventive strategies, wineries often rely on treatments such as charcoal fining, which is also negatively impacting wine aroma. This study aims at evaluating the potential of different fining agents based on animal or vegetal proteins to prevent wine pinking when applied at the level of must clarification. The work was carried out on Lugana wines, which is well-recognised as sensible to pinking problems.

METHODS: Two experimental Lugana musts were obtained by applying a standard winemaking protocol and were then clarified with different commercial preparations based on vegetal proteins or casein, alone or in combination with PVPP. A control only using pectolytic enzyme was also prepared. Finings were carried out at 4°C for 16h, and the clear must (200 NTU) was then fermented in controlled conditions. At the end of fermentation all wines were bottled with 25 mg/L of free SO2. Musts and wines were submitted to linear sweep voltammetry, colorimetric (CIELab) and spectrophotometric analyses. Pinking was assessed by CIELab.

RESULTS: Must fining with products based on combination of vegetable proteins and PVPP allowed significant reduction of must content in oxidizable compounds assessed by voltammetry, and this difference was still detected in the finished wines. After one month of bottle aging (free SO2 being 20 mg/L in all wines) pinking was detected for all wines except for those obtained from musts treated with potato or pea protein combined with PVPP. Voltammetric features of the must were shown to be well correlated with the risk of wine pinking. Analysis after one year of bottle aging confirmed the potential of fining to prevent pinking.

CONCLUSIONS: The type of fining agent used in must fining affects the occurrence of pinking in the finished wines. Vegetable proteins in combination with PVPP showed high potential for pinking prevention. Voltammetric analyses could be a promising tool for rapid assessment of the efficacy of fining treatments towards pinking.

ACKNOWLEDGMENTS:

The present work was financially supported by Biolaffort.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Ugliano 1, Riccardo MANARA 1,  Eduardo VELA ROMAN 1, Virginie MOINE 1, Arnaud MASSOT 2, Davide SLAGHENAUFI 2.

1 University of Verona, Italy.
2 Biolaffort, France.

Contact the author

Keywords

pinking, fining, vegetable proteins, linear sweep voltammetry

Citation

Related articles…

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

On the relationship between climate and “terroir” at different spatial scales: the input of new methodological tools

Un grand nombre de travaux ont été consacrés à la mise en éyidence et à la quantification de l’effet du climat sur la qualité de la production viticole. IIs ont permis de caractériser les grands types de production à une large échelle géographique, et d’en évaluer les variations interannuelles au niveau des millésimes.