Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 On-the-go resistivity sensors employment to support soil survey for precision viticulture

On-the-go resistivity sensors employment to support soil survey for precision viticulture

Abstract

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).
The aim of this work was to test the sensitivity of the ARP methodology in supporting soil survey for precision viticulture. In particular, an optimization procedure for coupled geoelectrical and soil surveys is illustrated.
The research was carried out in a vineyard located in Tuscany (central Italy) affected by low yield due to soil salinity; the investigation was simultaneously conducted by soil survey and resistivity measurements. The ARP method consists in the electric current injection into the ground and in the continuous measure of the resulting potential, simultaneously providing three georeferenced values of ER related to 50, 100 and 170 cm depths for each point.
Forty-nine soil samples were taken at 10-30 cm depth and analyzed for moisture, particle size distribution and electrical conductivity. The best correlation (R2 = 0.609; P <0.01) was obtained between clay content and ER referred to the 0-50 cm depth (ER50).
The evaluation of the density reduction effect for both ARP and soil survey was expressed in terms of ER50 and clay predictability. Doubling the ARP swaths width (12 m) the ER50 accuracy was substantially in agreement with that obtained for the highest ARP survey density (22 swaths 6 m spaced); the further width doubling (24 m) provided a moderate accuracy. With regard to clay content prediction k accuracy values ranged between 0.87 and 0.49 for the 22 swaths/25 soil samples and 10 swaths/12 soil samples combination, respectively.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.C. Andrenelli, E.A.C. Costantini, S. Pellegrini, R. Perria, and N. Vignozzi

CRA-ABP- Centro per l’Agrobiologia e la Pedologia, Piazza M. D’Azeglio, 30 50121, Firenze, Italy

Contact the author

Keywords

ARP, ER, accuracy, precision viticulture, GIS, clay

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.