Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 On-the-go resistivity sensors employment to support soil survey for precision viticulture

On-the-go resistivity sensors employment to support soil survey for precision viticulture

Abstract

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).
The aim of this work was to test the sensitivity of the ARP methodology in supporting soil survey for precision viticulture. In particular, an optimization procedure for coupled geoelectrical and soil surveys is illustrated.
The research was carried out in a vineyard located in Tuscany (central Italy) affected by low yield due to soil salinity; the investigation was simultaneously conducted by soil survey and resistivity measurements. The ARP method consists in the electric current injection into the ground and in the continuous measure of the resulting potential, simultaneously providing three georeferenced values of ER related to 50, 100 and 170 cm depths for each point.
Forty-nine soil samples were taken at 10-30 cm depth and analyzed for moisture, particle size distribution and electrical conductivity. The best correlation (R2 = 0.609; P <0.01) was obtained between clay content and ER referred to the 0-50 cm depth (ER50).
The evaluation of the density reduction effect for both ARP and soil survey was expressed in terms of ER50 and clay predictability. Doubling the ARP swaths width (12 m) the ER50 accuracy was substantially in agreement with that obtained for the highest ARP survey density (22 swaths 6 m spaced); the further width doubling (24 m) provided a moderate accuracy. With regard to clay content prediction k accuracy values ranged between 0.87 and 0.49 for the 22 swaths/25 soil samples and 10 swaths/12 soil samples combination, respectively.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.C. Andrenelli, E.A.C. Costantini, S. Pellegrini, R. Perria, and N. Vignozzi

CRA-ABP- Centro per l’Agrobiologia e la Pedologia, Piazza M. D’Azeglio, 30 50121, Firenze, Italy

Contact the author

Keywords

ARP, ER, accuracy, precision viticulture, GIS, clay

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Soil and Climate Interactions with Grapevines

To test the hypothesis that soil type plays a minor role relative to that of vine vigor in the determination of yield, fruit composition and wine sensory attributes, 5 Chardonnay vineyards in the Niagara

Reconnaissance des vins de terroir par les consommateurs

Approaching the notion of terroir wines at the level of consumption poses a problem due to the absence of a regulatory definition of the term terroir, which is not taken up either at Community level or at national level (the Consumer Code in particular does not define not the land). However, whatever definition is adopted for the terroir, we can retain at the consumer level an identification of the terroir through the different geographical mentions appearing on the labels or on the shelves of the wine shelf.

Recent advances in measuring, estimating, and forecasting grapevine yield and quality

Grapevine yield and fruit quality are two major drivers of input allocation and, ultimately, revenue for grape producers. Because yield and fruit quality vary substantially from year-to-year and within a single block, opportunities exist for optimization via precision management activities that could lead to more profitable and sustainable grape production. Here, we review recent advances in the techniques and technology used to measure, estimate, and forecast grapevine yield and fruit quality. First, we discuss direct “measurement” of yield and quality (i.e. ground-truth data generation), with an emphasis on potential for scalability and automation. Second, we discuss technology and techniques that do not directly measure yield and quality, but use correlated measurements for their estimation.

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation.

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.