Terroir 2006 banner
IVES 9 IVES Conference Series 9 The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

Abstract

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions. On the contrary, vines grafted on 3309C maintained the transpiratory flux during the day, despite conditions of limited water availability. Vines grafted onto 1103P had significantly higher (less negative) values of late afternoon (16h00) stem water potential, compared to those grafted on 3309C. Simultaneous assimilation and stomatal conductance values were significantly lower for the Xinomavro-1103P combination compared to Xinomavro on 3309C. These results support the possibility of a more sensitive drought avoidance mechanism for vines grafted on 1103P based on stomatal control. On the contrary, 3309C allowed this cultivar to maintain higher stomatal conductance and water uptake under water deficit. Grapes from the Xinomavro-3309C combination exhibited significantly superior sugar content at harvest, expressed on a per g of fresh berry weight basis. Since growth and yield parameters were similar among treatments, this finding is likely to be related to the higher afternoon photosynthetic rate of 3309C-grafted vines, prior to harvest.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Stefanos KOUNDOURAS (1), Eleftheria ZIOZIOU (1), Nikolaos NIKOLAOU (1) and Konstantinos ANGELOPOULOS (2)

(1) Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
(2) Laboratory of Plant Physiology, Department of Biology, University of Patras, 26500, Patras, Greece

Contact the author

Keywords

rootstock, drought tolerance, sap flow, stem water potential, gas exchange

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Cover crops in viticulture

In this audio recording of the IVES science meeting 2022, Gonzaga Santesteban (Department of Agronomy, Biotechnology and Food Science, Public University of Navarra (UPNA), Pamplona, Navarra, Spain) speaks about cover crops in viticulture. This presentation is based on 2 original articles accessible for free on OENO One.

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.