Terroir 1996 banner
IVES 9 IVES Conference Series 9 Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

Abstract

ln the Mid-Loire Valley, in France, for the fast twenty years a network of experimental plots has been used to analyse the terroir effect on the behaviour of the Cabernet franc variety of grape. The study of the primary leaf area (SFI) for several vintages shows that it differs greatly from one terroir to another. The SF1 can be characterized by the precocity of its setting in relation with bud-break earliness, and the effective area in place at flowering time. At this stage, differences between precocious and late terroirs can be more then 100%. The further evolution depends on the vigour originated by the terroir, which is main/y related to its water supply capacity. The type of evolution and the consequences on the composition of the berries can be appraised through the kinetics of the SF1 growth during the pre-flowering period. This analysis of a differentiation in the setting of the primary leaf area in relation with the terroir indicates that the construction of quality may begin very soon, at the early stages of the grapevine cycle. A model of physiological pathways of the ripening process is proposed, for the Northern vineyards. lt takes into account the importance of the “precocity” factor during the first part of the cycle, and the “water supply” during the second part.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

G. BARBEAU, R. MORLAT, A. JAQUET, C. ASSELIN, M. GRASSIN

Unité de Recherches sur la Vigne et le Vin INRA, Centre d’Angers, France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Agroclimatic zonation for vine growing in Maranhão State, Brazil

es indices agroclimatiques concernant le bilan hydrique et la température moyenne de l’air, ont été utilisés pour la caractérisation des zones avec différentes aptitudes pour la viticulture de vin (Vitis vinifera L.) dans l’état du Maranhão, Brésil.

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.