Terroir 1996 banner
IVES 9 IVES Conference Series 9 Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

Abstract

ln the Mid-Loire Valley, in France, for the fast twenty years a network of experimental plots has been used to analyse the terroir effect on the behaviour of the Cabernet franc variety of grape. The study of the primary leaf area (SFI) for several vintages shows that it differs greatly from one terroir to another. The SF1 can be characterized by the precocity of its setting in relation with bud-break earliness, and the effective area in place at flowering time. At this stage, differences between precocious and late terroirs can be more then 100%. The further evolution depends on the vigour originated by the terroir, which is main/y related to its water supply capacity. The type of evolution and the consequences on the composition of the berries can be appraised through the kinetics of the SF1 growth during the pre-flowering period. This analysis of a differentiation in the setting of the primary leaf area in relation with the terroir indicates that the construction of quality may begin very soon, at the early stages of the grapevine cycle. A model of physiological pathways of the ripening process is proposed, for the Northern vineyards. lt takes into account the importance of the “precocity” factor during the first part of the cycle, and the “water supply” during the second part.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

G. BARBEAU, R. MORLAT, A. JAQUET, C. ASSELIN, M. GRASSIN

Unité de Recherches sur la Vigne et le Vin INRA, Centre d’Angers, France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The aim of this study is to provide an overview of the terroir of Saint-Romain, Burgundy, based on three main information sources: official data relating to vines (CVI), soil cartography and a survey of winegrowers’ practices.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Rootstock effects on cv. Ugni blanc berry and wine composition

In the Cognac region in France, Ugni blanc is the most planted grape variety (98% of the 80 500 ha). This vine region is in expansion due to the success of the associated well-known brandy and the need of high grape yield to guarrantee the production of base wine for distillation. About 2 to 3000 ha are newly planted each year and rootstocks are one powerfull tool for vineyard adaptation to soil or climate change. As rootstocks ensure water and mineral nutrient supplies to the scion, it is important to better understand their effect on berry compostionnal parameters such as sugars and nitrogen compounds, which are the main precursors for fermentary aroma metabolites, the latter being quality markers for Cognac after distillation.