Terroir 1996 banner
IVES 9 IVES Conference Series 9 Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

Abstract

ln the Mid-Loire Valley, in France, for the fast twenty years a network of experimental plots has been used to analyse the terroir effect on the behaviour of the Cabernet franc variety of grape. The study of the primary leaf area (SFI) for several vintages shows that it differs greatly from one terroir to another. The SF1 can be characterized by the precocity of its setting in relation with bud-break earliness, and the effective area in place at flowering time. At this stage, differences between precocious and late terroirs can be more then 100%. The further evolution depends on the vigour originated by the terroir, which is main/y related to its water supply capacity. The type of evolution and the consequences on the composition of the berries can be appraised through the kinetics of the SF1 growth during the pre-flowering period. This analysis of a differentiation in the setting of the primary leaf area in relation with the terroir indicates that the construction of quality may begin very soon, at the early stages of the grapevine cycle. A model of physiological pathways of the ripening process is proposed, for the Northern vineyards. lt takes into account the importance of the “precocity” factor during the first part of the cycle, and the “water supply” during the second part.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

G. BARBEAU, R. MORLAT, A. JAQUET, C. ASSELIN, M. GRASSIN

Unité de Recherches sur la Vigne et le Vin INRA, Centre d’Angers, France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Grassland and patch scale diversity in supporting avian diversity and potential ecosystem services

The composition and structure of vineyard landscapes significantly affect bird communities and the ecosystem services they provide in agriculture.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.