terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Abstract

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Marine Morel, Sarah Cookson, Nathalie Ollat, and Elisa Marguerit

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Acknowledgements: We would like to acknowledge the assistance of all the interns who helped to sample the petioles particularly Gwénaëlle Boué, Elia Breuillot, Louis Rhulé, Pacôme Chatterjee, and the technical staff involved on the setting of the GreffAdapt experimental vineyard, particularly the unite Expérimentale Viticole de Bordeaux 1442, INRAE 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]).

Modernizing wine legislation for a resilient and competitive industry: lessons from Republic of Moldova’s legal and policy reforms

The evolution of Republic of Moldova’s wine industry offers a compelling case study in how legal harmonization and institutional reform can catalyze the transformation of a national wine sector.

Development of a novel UAV based approach for assessing the severity of spring frost and hail damages in vineyards

A solid feature of climate change is that the frequency and severity of weather extremes are increasing. Ranking European countries for the number of crop failures related to extreme events reports France on top followed by Italy and Spain (COM 2021).

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).