Terroir 2012 banner
IVES 9 IVES Conference Series 9 Viticultural practices: past, present and future

Viticultural practices: past, present and future

Abstract

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization, and protection of the environment. In terms of soil management, the combination of different techniques such as soil tillage, chemical weeding and cover-cropping, allowed to reach these three objectives in most cases. Insuring an adequate nitrogen supply to the grapevine was proved to play a key role, since nitrogen deficiency could impair the wine quality. The role of integrated water supply was pointed out, since moderate water restriction was favourable for the wine quality. In terms of vine training, a special interest was given to the winter pruning, keeping in mind the respect for the sap flows and trying to limit the expansion of the wood diseases, since the entirely mechanical pruning was rather inconclusive. Thresholds of leaf/fruit ratios were established and the canopy management during the summer such as leaf removal and shoot tipping were adapted accordingly. The objective was also to minimise the risk of diseases. The control of the yield has become one of the main concerns in viticulture. Although cluster thinning before maturation used to be unimaginable, it is today a common practice in all the vineyards concerned about wine quality and vine longevity. The concept of sustainability will go on influencing the evolution of the practices in viticulture.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

François MURISIER, Vivian ZUFFEREY, Jean-Laurent SPRING

Station de recherche Agroscope Changins-Wädenswil ACW, CH-1260 Nyon

Contact the author

Keywords

soil and water management, vine management, yield, quality

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount.

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.

Organic mulches improve vine vigour, yield and physiological response in a semi-arid region

Recycled organic mulch within the row in vineyard floor management has become an interesting ecological strategy to adapt the crop to climate change consequences in semi-arid regions.
This study aimed to assess the impact of three recycled organic mulches [straw (STR), grape pruning debris (GPD), and spent mushroom compost (SMC)] and two conventional soil management practices [herbicide (HERB) and under-row tillage (TILL)] on vegetative vigour (NDVI), production (kg/plant), and physiological parameters (δ13C in grapes and leaf gas exchange during four grapevine phenology stages). Additionally, temperature and water soil parameters were collected at three soil depths. Data was collected during the 2021 and 2022 grapevine growing seasons in La Rioja, Spain.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.