IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry


Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments. However, this technique does not distinguish coeluted compounds showing identical mass spectra. The objective of this work was to develop a method using ion mobility (UHPLC−ESI−TIMS−QTOF−MS/MS) to improve the detection and discrimination of dehydrodicatechins and procyanidins and apply it to grape seed extracts. Oxidation dimers of (+)-catechin and/or (−)-epicatechin were prepared from the reaction with a grape polyphenoloxidase (PPO) extract in aqueous medium (pH~5). A commercial grape seed extract was used for the application of the analytical method. Analyses were performed using the following conditions: an UHPLC C18 column, H2O/HCOOH (90/1) and C2H3N/H2O/HCOOH (80/19/1) as mobile phase, ESI in negative mode, TIMS analyser with the inverse reduced mobility (1/K0) range of 1–1.25, 150 ms ramp time , and a mass range of 150–1500 m/z, using collision-induced dissociation at 27 eV. The method was optimized for the detection and separation of dehydrodicatechins and procyanidinins in the ion mobility dimension using standards and mixtures of oxidation products. Approximately thirty dehydrodicatechins were produced in the reaction mixture with PPO. These compounds included B-type and A-type dehydrodicatechins derived from (+)-catechin and/or (−) epicatechin, containing interflavanic bonds of different natures (biphenyl and biphenyl ether) and positions. Our method allowed the separation by ion mobility of several pairs of isomeric dehydrodicatechins coeluted (or partially) in chromatography. Some of them had similar MS/MS fragmentation pattern and would hardly be distinguished by the use of LC-MS/MS alone. Application of the method on a sample of grape seeds revealed the presence of different B-type procyanidins and two dehydrodicatechins which were derivatives of (+)-catechin and (−)-epicatechin, respectively. It is noteworthy that among these compounds a good separation by ion mobility was obtained for a B-type dehydrodicatechin, procyanidin B1 and procyanidin B3 which were partially coeluted in chromatography.

To the best of our knowledge, this is the first time that ion mobility has been applied to the analysis of (+)-catechin and/or (−)-epicatechin-derived dehydrodicatechins. Mainly, the method proposed in this work provided the detection of several isomers of dehydrodicatechins and procyanidins in model solutions and grape seeds, thanks to the additional separation obtained by ion mobility. This method has the potential to be applied on several other natural complex matrices such as wine and by-products for the monitoring of dehydrodicatechins, considered as oxidation markers.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article


De Sousa Dias Aécio1, Verbaere Arnaud1, Meudec Emmanuelle1, Deshaies Stacy1, Saucier Cédric1, Cheynier Véronique1 and Sommerer Nicolas2

1SPO, INRAE, Université de Montpellier, Institut Agro Montpellier
2INRAE, PROBE Research Infrastructure, PFP Polyphenol analytical facility

Contact the author


ion mobility spectrometry, dehydrodicatechins, flavan-3-ols oxidation markers, procyanidins, grape seeds


IVAS 2022 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.