IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Using 1H-NMR combined with chemometrics to discriminate the effect of different cuts and toasting of woods used for grape pomace distillate ageing

Using 1H-NMR combined with chemometrics to discriminate the effect of different cuts and toasting of woods used for grape pomace distillate ageing

Abstract

The purpose of this research study is to consider new solutions for distillate ageing, in alternative to conventional oak chips or barrels in particular sliced wood and peeled wood were compared to oak cubes, normally employed during both wine and distillate ageing. All three formats have been toasted using a “in lab” protocol at three different level of intensity: strongly toasted, lightly toasted and not toasted.
NMR spectroscopy was used to assess the differences, in and the chemical fingerprint among experimental distillates, aged using woods with different cuts and toasting levels.
NMR spectrometry is widely used in food analysis for metabolomic studies and for the evaluation of samples that have undergone different treatments. NMR allows to obtain a complex fingerprint spectrum characterised by the chemical species of the samples. The advantages of high resolution 1H-NMR are absolute reproducibility and laboratory-to-laboratory transferability, compared to other method currently used in food analysis. The region between 11 and 6 ppm of 1H-NMR spectra was chosen focussing on the range where main structural differences related to xylovolatile compounds, namely phenols, aldehydes and aromatic groups were present.
The obtained 1H-NMR data sets were firstly analysed by chemometric multivariate unsupervised methods, that showed a good separation between the control sample (i.e. distillates aged without oak) and all other samples, as well as between the different sample groups. In particular, principal components analysis (PCA), Anova-Simultaneous components analysis (ASCA) and hierarchical cluster analysis (HCA) were calculated and compared. This approach showed that samples refined with strongly, lightly or not toasted wood present a different molecular profile. A group separation was observed based on the wood cut type (i.e. sliced, peeled or cubes). Moreover, a non-negligible effect of the interaction between cut type and the toasting level was noticed.
Hence, the results confirmed the ageing process, that affects the chemical profile of grape pomace distillates, can be effectively monitored by NMR analysis. This provides a promising tool for distinguishing the different ageing conditions of spirits and assessing their quality

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Portesi Chiara1, Mandrile Luisa1, Asproudi Andriani2, Bonello Federica2, Chiarabaglio Pier Mario3, Rosso Laura3 and Petrozziello Maurizio2

1INRiM – Istituto Nazionale di Ricerca Metrologica, Politecnico di Torino
2CREA, Research Centre for Viticulture and Enology
3CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Foresta e Legno 

Contact the author

Keywords

Toasting process, wood chips, NMR, grape pomace distillate, chemometrics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes).

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.