IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Using 1H-NMR combined with chemometrics to discriminate the effect of different cuts and toasting of woods used for grape pomace distillate ageing

Using 1H-NMR combined with chemometrics to discriminate the effect of different cuts and toasting of woods used for grape pomace distillate ageing

Abstract

The purpose of this research study is to consider new solutions for distillate ageing, in alternative to conventional oak chips or barrels in particular sliced wood and peeled wood were compared to oak cubes, normally employed during both wine and distillate ageing. All three formats have been toasted using a “in lab” protocol at three different level of intensity: strongly toasted, lightly toasted and not toasted.
NMR spectroscopy was used to assess the differences, in and the chemical fingerprint among experimental distillates, aged using woods with different cuts and toasting levels.
NMR spectrometry is widely used in food analysis for metabolomic studies and for the evaluation of samples that have undergone different treatments. NMR allows to obtain a complex fingerprint spectrum characterised by the chemical species of the samples. The advantages of high resolution 1H-NMR are absolute reproducibility and laboratory-to-laboratory transferability, compared to other method currently used in food analysis. The region between 11 and 6 ppm of 1H-NMR spectra was chosen focussing on the range where main structural differences related to xylovolatile compounds, namely phenols, aldehydes and aromatic groups were present.
The obtained 1H-NMR data sets were firstly analysed by chemometric multivariate unsupervised methods, that showed a good separation between the control sample (i.e. distillates aged without oak) and all other samples, as well as between the different sample groups. In particular, principal components analysis (PCA), Anova-Simultaneous components analysis (ASCA) and hierarchical cluster analysis (HCA) were calculated and compared. This approach showed that samples refined with strongly, lightly or not toasted wood present a different molecular profile. A group separation was observed based on the wood cut type (i.e. sliced, peeled or cubes). Moreover, a non-negligible effect of the interaction between cut type and the toasting level was noticed.
Hence, the results confirmed the ageing process, that affects the chemical profile of grape pomace distillates, can be effectively monitored by NMR analysis. This provides a promising tool for distinguishing the different ageing conditions of spirits and assessing their quality

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Portesi Chiara1, Mandrile Luisa1, Asproudi Andriani2, Bonello Federica2, Chiarabaglio Pier Mario3, Rosso Laura3 and Petrozziello Maurizio2

1INRiM – Istituto Nazionale di Ricerca Metrologica, Politecnico di Torino
2CREA, Research Centre for Viticulture and Enology
3CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Foresta e Legno 

Contact the author

Keywords

Toasting process, wood chips, NMR, grape pomace distillate, chemometrics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape

Impact of GoLo technology on the aroma profile of red and white wines after total and partial dealcoholisation

Wine dealcoholisation has been practised since the early 1900s and has gained importance due to climate change
and shifting consumer preferences for lower-alcohol beverages. Rising temperatures are accelerating grape
ripening, increasing sugar content and, consequently, raising the alcohol strength of wines.

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses.

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture