terclim by ICS banner
IVES 9 IVES Conference Series 9 VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Abstract

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Cécile Kahn1,2, Susanne Tittmann2, Ghislaine Hilbert1, Christel Renaud1, Eric Gomès1 and Manfred Stoll2

1EGFV, Univ. Bordeaux, Bordeaux Science Agro, INRAE, ISVV, Villenave d’Ornon, France 
2Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author

Keywords

Free Air CO2 Enrichment, carbon dioxide, berry ripening, berry composition

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Soil variability effects on vine rootzones and available water

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Effect of topography on vine evapotranspiration and water status in hillside vineyards

Many winegrape regions have hillside vineyards, where vine water use is affected by vine age, density and health, canopy size, row orientation, irrigation practices

The impact of selected odorant combinations in wine oxidative aroma and their interactive role on the olfactory perception

It is widely known the impact that oxidation has on wine sensory degradation and eventually, in the shortening of its longevity.

Legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, Japan

This study analyses the actual situation regarding the legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, the centre of Japanese wine industry with more than 150 years of wine-making tradition.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.