IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Abstract

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

Human saliva is rich in different types of peptides and proteins: histatins, statherin, P−B peptide, cystatins and proline-rich proteins (PRPs), being the latter ones the most studied regarding the development of astringency (Ramos-Pineda et al., 2019; Soares et al., 2018). However, other high molecular weight (HMW) proteins like albumin, α-amylase and mucins are the major components of the human salivary proteome (Cheaib & Lussi, 2013; Castagnola et al., 2011) and little research has been reported in relation to their implication in the astringency development. Here, the molecular interactions between the HMW salivary proteins, namely, albumin from human serum, α-amylase from human saliva (Type XIII-A) and mucin from bovine submaxillary glands (Type I-S), and a seed flavanol extract with a composition similar to that found in red wine have been characterized by Fluorescence Quenching and Isothermal Titration Calorimetry (ITC). Moreover, in order to obtain further insights into the specific flavanols that are involved in the interactions with HMW salivary proteins, each binding assay has been analysed by HPLC–MS. The obtained results suggested that HMW salivary proteins could be implicated in the astringency development, since these proteins were able to interact and to precipitate wine flavanols, although with different involvement depending on the HWM protein assayed since a clear ligand preference was observed.

References

Castagnola et al., 2011. Trends in Biotech., 29(8), 409–418.
Cheaib & Lussi, 2013. J. Biosci., 38(2), 259–265.
Gibbins & Carpenter, 2013. J. Texture Stud., 44(5), 364−375.
Ramos-Pineda et al., 2019. Food Chem., 272, 210−215.
Soares et al., 2018. Food Chem., 243, 175−185.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Manjón Elvira1, García-Estévez Ignacio1 and Escribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca.

Contact the author

Keywords

mucin, albumin, amylase, molecular interactions, ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging. METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction.