IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Abstract

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

Human saliva is rich in different types of peptides and proteins: histatins, statherin, P−B peptide, cystatins and proline-rich proteins (PRPs), being the latter ones the most studied regarding the development of astringency (Ramos-Pineda et al., 2019; Soares et al., 2018). However, other high molecular weight (HMW) proteins like albumin, α-amylase and mucins are the major components of the human salivary proteome (Cheaib & Lussi, 2013; Castagnola et al., 2011) and little research has been reported in relation to their implication in the astringency development. Here, the molecular interactions between the HMW salivary proteins, namely, albumin from human serum, α-amylase from human saliva (Type XIII-A) and mucin from bovine submaxillary glands (Type I-S), and a seed flavanol extract with a composition similar to that found in red wine have been characterized by Fluorescence Quenching and Isothermal Titration Calorimetry (ITC). Moreover, in order to obtain further insights into the specific flavanols that are involved in the interactions with HMW salivary proteins, each binding assay has been analysed by HPLC–MS. The obtained results suggested that HMW salivary proteins could be implicated in the astringency development, since these proteins were able to interact and to precipitate wine flavanols, although with different involvement depending on the HWM protein assayed since a clear ligand preference was observed.

References

Castagnola et al., 2011. Trends in Biotech., 29(8), 409–418.
Cheaib & Lussi, 2013. J. Biosci., 38(2), 259–265.
Gibbins & Carpenter, 2013. J. Texture Stud., 44(5), 364−375.
Ramos-Pineda et al., 2019. Food Chem., 272, 210−215.
Soares et al., 2018. Food Chem., 243, 175−185.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Manjón Elvira1, García-Estévez Ignacio1 and Escribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca.

Contact the author

Keywords

mucin, albumin, amylase, molecular interactions, ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes

The revision of the delimitation of the AOC “Champagne”

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Planting vineyards in cooler climates has been used over recent years as
a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety.