IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Abstract

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

Human saliva is rich in different types of peptides and proteins: histatins, statherin, P−B peptide, cystatins and proline-rich proteins (PRPs), being the latter ones the most studied regarding the development of astringency (Ramos-Pineda et al., 2019; Soares et al., 2018). However, other high molecular weight (HMW) proteins like albumin, α-amylase and mucins are the major components of the human salivary proteome (Cheaib & Lussi, 2013; Castagnola et al., 2011) and little research has been reported in relation to their implication in the astringency development. Here, the molecular interactions between the HMW salivary proteins, namely, albumin from human serum, α-amylase from human saliva (Type XIII-A) and mucin from bovine submaxillary glands (Type I-S), and a seed flavanol extract with a composition similar to that found in red wine have been characterized by Fluorescence Quenching and Isothermal Titration Calorimetry (ITC). Moreover, in order to obtain further insights into the specific flavanols that are involved in the interactions with HMW salivary proteins, each binding assay has been analysed by HPLC–MS. The obtained results suggested that HMW salivary proteins could be implicated in the astringency development, since these proteins were able to interact and to precipitate wine flavanols, although with different involvement depending on the HWM protein assayed since a clear ligand preference was observed.

References

Castagnola et al., 2011. Trends in Biotech., 29(8), 409–418.
Cheaib & Lussi, 2013. J. Biosci., 38(2), 259–265.
Gibbins & Carpenter, 2013. J. Texture Stud., 44(5), 364−375.
Ramos-Pineda et al., 2019. Food Chem., 272, 210−215.
Soares et al., 2018. Food Chem., 243, 175−185.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Manjón Elvira1, García-Estévez Ignacio1 and Escribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca.

Contact the author

Keywords

mucin, albumin, amylase, molecular interactions, ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.

Monitoring the tawny port wine aging process using precision enology

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny.

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Climate change strongly affects the wine-growing sector which increasingly requires in situ adaptation strategies aimed at preserving the sustainability of production. Investigating microclimate becomes crucial in comprehending environmental pressures on plants. The microclimatic investigation conducted in the Orvieto PDO (central Italy) allowed us to highlight the climatic dynamics occurring in the last 25 years and the frequency and intensity of abiotic stresses. Two management strategies for the canopy were identified: early defoliation (ELR) and foliar application of Basalt Flour ® (FB) compared to the ordinary management (C) of the company (bud selection and topping). The effects on plant vigour indices (LAI), resource allocation in terms of carbon stored in the above-ground organs of the vine, and the microclimate of the canopy and the berry were evaluated. In particular, microclimate was evaluated through a network of sensors connected wirelessly (Wireless Sensor Network), dedicated to collecting information on temperature and humidity in the canopy and clusters.