IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Abstract

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

Human saliva is rich in different types of peptides and proteins: histatins, statherin, P−B peptide, cystatins and proline-rich proteins (PRPs), being the latter ones the most studied regarding the development of astringency (Ramos-Pineda et al., 2019; Soares et al., 2018). However, other high molecular weight (HMW) proteins like albumin, α-amylase and mucins are the major components of the human salivary proteome (Cheaib & Lussi, 2013; Castagnola et al., 2011) and little research has been reported in relation to their implication in the astringency development. Here, the molecular interactions between the HMW salivary proteins, namely, albumin from human serum, α-amylase from human saliva (Type XIII-A) and mucin from bovine submaxillary glands (Type I-S), and a seed flavanol extract with a composition similar to that found in red wine have been characterized by Fluorescence Quenching and Isothermal Titration Calorimetry (ITC). Moreover, in order to obtain further insights into the specific flavanols that are involved in the interactions with HMW salivary proteins, each binding assay has been analysed by HPLC–MS. The obtained results suggested that HMW salivary proteins could be implicated in the astringency development, since these proteins were able to interact and to precipitate wine flavanols, although with different involvement depending on the HWM protein assayed since a clear ligand preference was observed.

References

Castagnola et al., 2011. Trends in Biotech., 29(8), 409–418.
Cheaib & Lussi, 2013. J. Biosci., 38(2), 259–265.
Gibbins & Carpenter, 2013. J. Texture Stud., 44(5), 364−375.
Ramos-Pineda et al., 2019. Food Chem., 272, 210−215.
Soares et al., 2018. Food Chem., 243, 175−185.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Manjón Elvira1, García-Estévez Ignacio1 and Escribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca.

Contact the author

Keywords

mucin, albumin, amylase, molecular interactions, ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

Sustainable geographical indications? Inclusion of sustainability criteria in the Denomination of Origin Campos de Cima da Serra, Brazil

The objective of this study is to assess the potential for integrating sustainability guidelines into Geographical Indications of wine, especially in the case of the Denomination of Origin Campos de Cima da Serra (CCS), Brazil.

Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Drought stress has a profound impact on grapevine productivity and significantly alters key quality-related traits of berries. Although research has been conducted on the effects of individual drought events, there is still a knowledge gap regarding the cumulative consequences of repeated exposure to water scarcity and the influence of the timing of stress imposition. To address this gap, a field experiment was conducted to investigate the impacts of repeated drought stress on yield, berry composition, and the phenolic profile of grape berries. The results indicate that yield is primarily influenced by pre-veraison water deficit. Although the number of clusters was only slightly reduced, a substantial decrease in berry size was observed, resulting in a notable reduction in overall yield.

Influence of cultivar and its drought tolerance on soil microbiome

Soil microbiome plays a crucial role in plant health and resilience, particularly under abiotic stress conditions such as drought.

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).