IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Abstract

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

Human saliva is rich in different types of peptides and proteins: histatins, statherin, P−B peptide, cystatins and proline-rich proteins (PRPs), being the latter ones the most studied regarding the development of astringency (Ramos-Pineda et al., 2019; Soares et al., 2018). However, other high molecular weight (HMW) proteins like albumin, α-amylase and mucins are the major components of the human salivary proteome (Cheaib & Lussi, 2013; Castagnola et al., 2011) and little research has been reported in relation to their implication in the astringency development. Here, the molecular interactions between the HMW salivary proteins, namely, albumin from human serum, α-amylase from human saliva (Type XIII-A) and mucin from bovine submaxillary glands (Type I-S), and a seed flavanol extract with a composition similar to that found in red wine have been characterized by Fluorescence Quenching and Isothermal Titration Calorimetry (ITC). Moreover, in order to obtain further insights into the specific flavanols that are involved in the interactions with HMW salivary proteins, each binding assay has been analysed by HPLC–MS. The obtained results suggested that HMW salivary proteins could be implicated in the astringency development, since these proteins were able to interact and to precipitate wine flavanols, although with different involvement depending on the HWM protein assayed since a clear ligand preference was observed.

References

Castagnola et al., 2011. Trends in Biotech., 29(8), 409–418.
Cheaib & Lussi, 2013. J. Biosci., 38(2), 259–265.
Gibbins & Carpenter, 2013. J. Texture Stud., 44(5), 364−375.
Ramos-Pineda et al., 2019. Food Chem., 272, 210−215.
Soares et al., 2018. Food Chem., 243, 175−185.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Manjón Elvira1, García-Estévez Ignacio1 and Escribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca.

Contact the author

Keywords

mucin, albumin, amylase, molecular interactions, ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

Further insight on the use of yeast derivative products as alcoholic fermentation enhancers

Issues that can arise during the alcoholic fermentation are frequently attributed to imbalances or deficiencies in the nutrient composition of the fermentation medium.

Observed climatic trends in South African wine regions and potential implications for viticulture

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.