WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Abstract

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory profile. With its great resolution and excellent mass accuracy, ultrahigh resolution mass spectrometry (uHRMS) is the perfect tool to analyze the yeast metabolome at the end of alcoholic fermentation.

In this study, we aimed to characterize different non-Saccharomyces (NS) yeast species and to study the influence of these strains in sequential cultures with Saccharomyces cerevisiae (S). We show that tremendous differences exist between species in terms of metabolites, and we could clearly differentiate wines according to the yeast strain used in single cultures and markers, which reflect important differences between the yeast species. uHRMS was able to distinguish thousands of metabolites and provides deep insights into grape must composition allowing better understanding of the yeast-yeast interactome. Single cultures could be easily discriminated from sequential cultures based on their metabolite profile. New metabolites appeared in wines from sequential fermentation compared to single fermentation. The dominance of S, characterized by a metabolic richness not found with NS, is dependent on inoculation time and on the yeast species present. The wine composition of sequential culture is not only the addition of metabolites from each species but is the result of complex interactions. Co-inoculation leads to the formation of new compounds, reflecting a reshuffling of yeast metabolism linked to interaction mechanisms.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Roullier-Gall, Chloé, Bordet, Fanny, David, Vanessa, Schmitt-Kopplin, Philippe, Alexandre, Hervé

Presenting author

Roullier-Gall, Chloé – UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany | UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

Contact the author

Keywords

Yeast, interactions, mass spectrometry, metabolomics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino.

Under trellis cover crop induces grapevine tolerance to bunch rot

Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Drought tolerance of varieties in semi-arid areas: can the behavior of Tempranillo be improved by varieties of its own lineage?

Tempranillo is the most widely grown red grapevine variety in Spain, currently representing 42% of the total number of red varieties and 21% of the total vineyard area. Due to the economic importance that this variety represents in Spanish viticulture, in some areas where it is traditionally grown, there is a special concern about the viability of the future growing of this variety is being compromised by the climate change effects.

Key genes in rotundone biosynthesis are affected by temperature, light, water supply, and nitrogen uptake

Rotundone accumulation and biosynthesis is a complicated process. Previous research highlighted that these phenomenons were affected under ecophysiological conditions by viticultural practices (e.g. defoliation or irrigation). Individually, these practices often impact several abiotic factors that are difficult to separate such as temperature, water or nitrogen status, or radiation. Such dissociation can be achieved under controlled environmental conditions using potted vines.

Uvalino wine: chemical and sensory profile

The evaluation of different chemical compounds present in Uvalino wines was correlated with sensory analysis. The analysis showed a high content of polyphenolic compounds responsible for the organoleptic properties of wine, including color, astringency and bitterness.