WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Abstract

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory profile. With its great resolution and excellent mass accuracy, ultrahigh resolution mass spectrometry (uHRMS) is the perfect tool to analyze the yeast metabolome at the end of alcoholic fermentation.

In this study, we aimed to characterize different non-Saccharomyces (NS) yeast species and to study the influence of these strains in sequential cultures with Saccharomyces cerevisiae (S). We show that tremendous differences exist between species in terms of metabolites, and we could clearly differentiate wines according to the yeast strain used in single cultures and markers, which reflect important differences between the yeast species. uHRMS was able to distinguish thousands of metabolites and provides deep insights into grape must composition allowing better understanding of the yeast-yeast interactome. Single cultures could be easily discriminated from sequential cultures based on their metabolite profile. New metabolites appeared in wines from sequential fermentation compared to single fermentation. The dominance of S, characterized by a metabolic richness not found with NS, is dependent on inoculation time and on the yeast species present. The wine composition of sequential culture is not only the addition of metabolites from each species but is the result of complex interactions. Co-inoculation leads to the formation of new compounds, reflecting a reshuffling of yeast metabolism linked to interaction mechanisms.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Roullier-Gall, Chloé, Bordet, Fanny, David, Vanessa, Schmitt-Kopplin, Philippe, Alexandre, Hervé

Presenting author

Roullier-Gall, Chloé – UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany | UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

Contact the author

Keywords

Yeast, interactions, mass spectrometry, metabolomics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.

Relationship between soil and grapevine variety in the wineyard of Jura: example for the “Trousseau” variety from the “Terroir” of Montigny-Lès-Arsures (France)

Seven plots located in the commune of Montigny-lès-Arsures (Jura, 39), planted with grapevine varieties Trousseau and Savagnin, were chosen for a study of soil pits and a distribution of major and trace chemical elements in soils and wines. It was shown that the mineral matrix of the soil reflects the geological substratum and the sub-surface alteration process, while the organic soil matrix depends on agro-viticultural practices.

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects.

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis.

Premiers résultats d’une étude des caractéristiques analytiques et sensorielles de vins de Syrah selon leur terroir

A set of Syrah plots covering a wide range of terroirs distributed in the vineyards of the Rhone Valley and the Mediterranean South is examined through their oenological and sensory characteristics. The multidimensional analysis of data leads to the following groupings: (1) A group of unstructured wines with a simple aromatic profile dominated by fruity-floral notes; they come from plots where the ripening conditions have been disturbed by unfavorable climatic conditions, or an excess harvest.