WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Abstract

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory profile. With its great resolution and excellent mass accuracy, ultrahigh resolution mass spectrometry (uHRMS) is the perfect tool to analyze the yeast metabolome at the end of alcoholic fermentation.

In this study, we aimed to characterize different non-Saccharomyces (NS) yeast species and to study the influence of these strains in sequential cultures with Saccharomyces cerevisiae (S). We show that tremendous differences exist between species in terms of metabolites, and we could clearly differentiate wines according to the yeast strain used in single cultures and markers, which reflect important differences between the yeast species. uHRMS was able to distinguish thousands of metabolites and provides deep insights into grape must composition allowing better understanding of the yeast-yeast interactome. Single cultures could be easily discriminated from sequential cultures based on their metabolite profile. New metabolites appeared in wines from sequential fermentation compared to single fermentation. The dominance of S, characterized by a metabolic richness not found with NS, is dependent on inoculation time and on the yeast species present. The wine composition of sequential culture is not only the addition of metabolites from each species but is the result of complex interactions. Co-inoculation leads to the formation of new compounds, reflecting a reshuffling of yeast metabolism linked to interaction mechanisms.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Roullier-Gall, Chloé, Bordet, Fanny, David, Vanessa, Schmitt-Kopplin, Philippe, Alexandre, Hervé

Presenting author

Roullier-Gall, Chloé – UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany | UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

Contact the author

Keywords

Yeast, interactions, mass spectrometry, metabolomics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

The amount of synthetic pesticides applied in viticulture is relatively high compared to other agricultural crops, due to the high sensitivity of grapevine to diseases such as downy mildew (Plasmopora viticola). Alternatives to reduce fungicides are utterly needed to promote a sustainable vineyard-ecosystems and meet consumer acceptance. Essential oils (EOs) are amongst the most promising natural plant protection agents and have shown their antifungal properties previously. However, the efficiency of EOs depends highly on timing and application technique.

Grapevine sensitivity to fungal diseases: use of a combination of terroir cartography and parcel survey

In front of the economic interest and seeking to respect their environment, the wine growers move gradually towards a policy of reasoning their plant health protection. This is why, starting from epidemiologic studies on grapevine pathogens, forecasting models of the risks are developed by research and experimentation bodies.

The French grapevine breeding program resdur: state of the art and perspectives

The French grapevine breeding program for durable resistance to downy and powdery mildew (INRAE-ResDur) was initiated more than 20 years ago to help reduce the heavy use of plant protection products and provide a durable mean to cope with a strong pathogen pressure. This program has now proved to be effective, with about ten new varieties already officially registered. However, there is still a lot to be done (1) to reduce the duration of each breeding cycle, (2) to diversify disease factors’ pyramiding and anticipate emerging diseases, (3) to work towards larger adoption of the new resistant varieties. New breeding schemes incorporating for example genomic prediction of breeding values are being evaluated to accelerate genetic gains, saving cost and time while handling complex traits.

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.