WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Abstract

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory profile. With its great resolution and excellent mass accuracy, ultrahigh resolution mass spectrometry (uHRMS) is the perfect tool to analyze the yeast metabolome at the end of alcoholic fermentation.

In this study, we aimed to characterize different non-Saccharomyces (NS) yeast species and to study the influence of these strains in sequential cultures with Saccharomyces cerevisiae (S). We show that tremendous differences exist between species in terms of metabolites, and we could clearly differentiate wines according to the yeast strain used in single cultures and markers, which reflect important differences between the yeast species. uHRMS was able to distinguish thousands of metabolites and provides deep insights into grape must composition allowing better understanding of the yeast-yeast interactome. Single cultures could be easily discriminated from sequential cultures based on their metabolite profile. New metabolites appeared in wines from sequential fermentation compared to single fermentation. The dominance of S, characterized by a metabolic richness not found with NS, is dependent on inoculation time and on the yeast species present. The wine composition of sequential culture is not only the addition of metabolites from each species but is the result of complex interactions. Co-inoculation leads to the formation of new compounds, reflecting a reshuffling of yeast metabolism linked to interaction mechanisms.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Roullier-Gall, Chloé, Bordet, Fanny, David, Vanessa, Schmitt-Kopplin, Philippe, Alexandre, Hervé

Presenting author

Roullier-Gall, Chloé – UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany | UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

Contact the author

Keywords

Yeast, interactions, mass spectrometry, metabolomics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Besides location and microclimatic conditions, soil plays an important role in the quality of grapes and wine. Soil properties influence…

Preliminary studies on polyphenol assessment by Fourier transform-near infrared spectroscopy (FT-NIR) in grape berries

NIR spectroscopy has widely been tested in viticulture as powerful alternative to traditional analytical methods in the field of quality evaluation. NIR instruments have been used for assessing must and wine quality features in several works, but little information regarding their application on whole berries for polyphenol determination is available.

Vers des systèmes viticoles économes en pesticide. Étude du réseau DEPHY-Vigne

Dans le cadre de TerclimPro 2025, Esther Fouillet a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8318

Winemaking options for the improvement of the attributes of the wines from grapes with different oenological potential and sanitary status

The aim of this work was to study winemaking alternatives that will optimize the quality of the Tannat wines, taking advantage of the grape’s oenological potential.