Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 The revision of the delimitation of the AOC “Champagne”

The revision of the delimitation of the AOC “Champagne”

Abstract

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.
After that, successive laws, especially the Acts of February 11th 1951 and November 16th 1984, have gradually helped to introduce technical criteria in correcting delimitation process.
The global reviewing of the Champagne appellation area was first opened to secure its boundaries and prevent it from being gradually undermined. Today, we have come very close to full exploitation of land currently classified in AOC (In 2011, the planted surface reaches 34 157 ha, i.e. about 97% of the delimited surface estimated at 35280 ha), which raises the question of spatial extension of the vineyard. However, this extension should not be at the expense of quality and specificity of champagne. This is what is at stake in the global reviewing of the AOC.

Publication date: September 25, 2023

Issue: Terroir 2012

Type: Article

Authors

Édith TOULEMONDE LE NY1*, Marcel BAZIN2
1 Institut National de l’Origine et de la Qualité, site d’Epernay, 43ter rue des Forges, 51200 Epernay
2 professeur émérite à l’université de Reims Champagne-Ardenne

Contact the author

Keywords

Appellation of Controled Origin for Champagne, delimitation process, plot-scale delimitation, core of “terroir”

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.

Microbial resources for improving the sustainability in oenology

Sulphur dioxide has long been considered an irreplaceable additive due to its numerous significant positive effects during winemaking and beyond.

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.