Terroir 2004 banner
IVES 9 IVES Conference Series 9 Using GIS to assess the terroir potential of an Oregon viticultural region

Using GIS to assess the terroir potential of an Oregon viticultural region

Abstract

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face. Combined with matching the site to a grape variety, this decision will ultimately affect the vineyard’s yield, the quality of the wine produced, and the vineyard’s long-term profitability. This research facilitates the process by modeling the climate and landscape in a relatively young grape growing region in Oregon, the Umpqua Valley American Viticultural Area (AVA). The result is an inventory of land suitability that provides both existing and new growers greater insight into the best terroir of the region.
A field survey using a Global Positioning System (GPS) and a varietal survey were conducted covering all of the vineyards in the Umpqua Valley AVA. The results have described the locational factors important for vineyard layout, training methods, soil types, irrigation and frost uses, and phenological variability across the region. Using the locational information from the surveys of existing vineyards as the baseline, a digital elevation model (10m resolution) was analyzed for topographical components of elevation, slope, and aspect, ultimately identifying those sites that have ideal conditions for growing grapes in the region. The topographical classifications are then combined with soil characteristics of drainage, depth to bedrock, water holding capacity, and pH to produce a composite landscape model of suitability which is then masked by zoning requirements to identify the best available sites. In addition, a composite climate model, derived from the PRISM gridded data, develops cool, intermediate, warm, and hot climate-maturity groupings based on ripening potential and multiple climate parameters important for winegrape production. Finally, the composite landscape and climate models are then combined to detail the best terroir for specific varietal groupings in the Umpqua Valley AVA.
Combining topography, soil, and land use finds over 3000 acres of nearly ideal landscapes that are suitable for vineyard development. The results indicate that very good landscapes exist across all climate maturity types with strong potential for future development and production of quality fruit and wines. Through the use of GPS and GIS technologies, this research has helped to further define the terroir potential of grape growing in the Umpqua Valley AVA. The results provide existing and future growers with baseline knowledge of the region’s grape growing potential relative to its topography, soil, land use, and climate. While not specifically addressing the cultural aspects of terroir (e.g., style-directed viticultural and enological practices), which typically take many years to become dominant, the results presented here should serve to initiate better decisions in the site selection process, thus leading to fewer and/or more efficient trial and error procedures. In addition, for most potential growers, site selection will involve compromises, in that few sites will possess ideal characteristics in every respect. While compromise in many cases has been the rule, this body of research presents one of the best tools yet to enhance the site selection process for future growers in the Umpqua Valley AVA. Finally, the process developed here theoretically can be applied to any area where adequate spatial data resources are available.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Gregory V. Jones (1), Peder Nelson (2), and Nicholas Snead (3)

(1) Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, OR 97520, USA
(2) Environmental Education Program, Southern Oregon University, Ashland, OR, USA
(3) Department of Planning Public Policy & Management, University of Oregon, Eugene, OR, USA

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Aim: The main goal of this study was to find an efficient canopy management to limit the high temperature-related aroma losses of White Muscat grapes, and consequently to preserve the quality standards of Asti DOCG wines.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Terroir and climate: the role of homoclime matching

Climate is an important component or determinant of terroir, especially at the regional level. One can define three levels of terroir. These are the macro– or regional scale, which applies over tens of kilometres of the landscape. The second level is the meso- scale, which applies over kilometres or hundreds of meters, at the individual vineyard scale.

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.),

L’effet du climat viticole sur la typicité des vins rouges: caractérisation au niveau des régions viticoles Ibéro-Américaines

Il n’existe presque pas d’études qui caractérisent l’effet du climat viticole sur la typicité des vins en considérant les différents types de climats à l’échelle mondiale. Cette étude fait partie d’un projet CYTED de zonage vitivinicole. L’objectif a été de caractériser l’effet du climat viticole sur la typicité des vins sur une macro région viticole du monde.