terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Abstract

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines. Besides, the use of wine lees has been reported to stimulate MLF of O. oeni in wine [1]. Altogether, the aim of this work was to evaluate the MLF performance of L. plantarum in red grape must at different pHs, ethanol concentrations, and in the presence or absence of wine lees.

The results showed that L. plantarum can perform MLF even at pH 2.5. However, in presence of 6% (vol/vol) of ethanol, which can correspond to an early AF stage, MLF failed below pH 3.25. This behavior was observed in two commercial strains. However, the presence of wine lees in grape must at pH 3.25 allowed the completion of MLF. The addition of wine lees to the preinoculum or to the grape must also enhanced bacterial survival. Indeed, the supplementation in the preinoculum allowed the depletion of L-malic acid with one strain. In summary, wine lees potentially increase the survival of L. plantarum in red grape must, and thus, enhance MLF performance.

Acknowledgements: this work was supported by grant PID2021-124943OB-I00 (Spanish Research Agency). Aitor Balmaseda is a Margarita Salas postdoc researcher (2021URVMS25, Spanish Ministry of Universities financed with European Union-NextGenerationEU).

References:

1)  Balmaseda A. et al. (2021). Simulated lees of different yeast species modify the performance of malolactic fermentation by Oenococcus oeni in wine-like medium. Food Microbiology, 99, 103839.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Aitor Balmaseda1, *, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1

1Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Grup de Biotecnologia Enològica, C/ Marcellí Domingo 1, 43007 Tarragona, Catalonia, Spain
2Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Grup de Biotecnologia Microbiana dels Aliments, C/ Marcellí Domingo 1, 43007 Tarragona, Catalonia, Spain

Contact the author*

Keywords

Lactiplantibacillus plantarum, malolactic fermentation, wine lees, must

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.