terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Abstract

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines. Besides, the use of wine lees has been reported to stimulate MLF of O. oeni in wine [1]. Altogether, the aim of this work was to evaluate the MLF performance of L. plantarum in red grape must at different pHs, ethanol concentrations, and in the presence or absence of wine lees.

The results showed that L. plantarum can perform MLF even at pH 2.5. However, in presence of 6% (vol/vol) of ethanol, which can correspond to an early AF stage, MLF failed below pH 3.25. This behavior was observed in two commercial strains. However, the presence of wine lees in grape must at pH 3.25 allowed the completion of MLF. The addition of wine lees to the preinoculum or to the grape must also enhanced bacterial survival. Indeed, the supplementation in the preinoculum allowed the depletion of L-malic acid with one strain. In summary, wine lees potentially increase the survival of L. plantarum in red grape must, and thus, enhance MLF performance.

Acknowledgements: this work was supported by grant PID2021-124943OB-I00 (Spanish Research Agency). Aitor Balmaseda is a Margarita Salas postdoc researcher (2021URVMS25, Spanish Ministry of Universities financed with European Union-NextGenerationEU).

References:

1)  Balmaseda A. et al. (2021). Simulated lees of different yeast species modify the performance of malolactic fermentation by Oenococcus oeni in wine-like medium. Food Microbiology, 99, 103839.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Aitor Balmaseda1, *, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1

1Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Grup de Biotecnologia Enològica, C/ Marcellí Domingo 1, 43007 Tarragona, Catalonia, Spain
2Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Grup de Biotecnologia Microbiana dels Aliments, C/ Marcellí Domingo 1, 43007 Tarragona, Catalonia, Spain

Contact the author*

Keywords

Lactiplantibacillus plantarum, malolactic fermentation, wine lees, must

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.