terclim by ICS banner
IVES 9 IVES Conference Series 9 SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Abstract

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are ex-posed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity. The sole effect of temperature was investigated on well-irrigated potted Shiraz grapevines grown in a glasshouse, where either the whole vine or bunches-only were heated using fans. For both experiments, berries were sampled at harvest, peeled, ground and total flavonoids were extracted using 60% acetone [2]. Two additional assays evaluated the potential temperature impact on subsequent wine composition using wine-like extraction (15% ethanol) [3] or micro-scale winemaking. Detailed tannin composition was primarily determined by LC-MS/MS after phloroglucinolysis [2], with complementary total tannin concentration (methyl cellulose precipitable assay). Secondary metabolites such as phenolic acid and anthocyanins were also analyzed.

The present work showed that short spells of high temperature may not impact on skin and seed tannin extractability when assessed on visually undamaged berries by harvest. Indeed, while total skin tannin concentrations, extracted with 60% acetone, were clearly reduced by a rise of temperature around véraison, skin extractable tannin (15% ethanol) and seed tannin concentrations were not impacted. In damaged berries at harvest, skin tannins were dramatically reduced while seed tannins were mostly preserved. Wine quality, made with a mix of heat-damaged and undamaged berries, was significantly reduced when about 20% (by mass) of the berries were visually damaged and necrotic, corresponding to about 50% of damaged berries (in number). Maintaining wine quality under a changing climate with more frequent extreme events leading to heat stress and/or water stress is challenging. However, this study showed that the impact of heatwaves in the vineyard may be compensated by a better extraction during winemaking and require further investigations at winery scales.

 

1. Gouot, J. C., Smith, J. P., Holzapfel, B. P., Walker, A. R., & Barril, C. (2019d). Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 70(2), 397-423
2. Pinasseau, L., Verbaere, A., Roques, M., Meudec, E., Vallverdú-Queralt, A., Terrier, N., Boulet, J.-C., Cheynier, V., & Sommerer, N. (2016). A fast and robust UHPLC-MRM-MS method to characterize and quantify grape skin tannins after chemical depolymerization. Molecules, 21(10), 1409.
3. Bindon, K. A., Kassara, S., & Smith, P. A. (2017). Towards a model of grape tannin extraction under wine-like conditions: the role of suspended mesocarp material and anthocyanin concentration. Australian Journal of Grape and Wine Research, 23(1), 22-32 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Julia GOUOT1,2, Jason SMITH1,4, Bruno HOLZAPFEL5, Celia BARRIL1,3

1. School of Agricultural, Environmental and Veterinary Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2. Current address : Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
3. Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
4. New South Wales Department of Primary Industries, Orange, New South Wales, 2800, Australia
5. Wagga Wagga Agriculture Institute, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia

Contact the author*

Keywords

Extractability, High temperature, Flavonoids, Tannins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.