terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Abstract

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fun- gicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidi- mensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature). In addition, P. guilliermondii ZIM 624 possessed interesting enological traits, did not produce off-flavor related H2S and appeared as β-lyase and β-glucosidase producer.

Accordingly, the aim of this researsch was to study the antifungal mechanisms by assessing the volatiles produced by P. guilliermondii ZIM624. Namely, a study was conducted to identify volatile organic com- pounds (4 higher alcohols, 6 volatile phenols, 23 esters and 27 terpenes) produced by antagonistic Pichia guilliermondii strain ZIM624 and to determine the efficacy of the chosen volatiles of P. guilliermondii in suppression of B. cinerea growth and control of Botrytis fruit rot of grape berries. Thereby, a comprehensive assessment of produced volatiles in the process of wine production was achieved using two validated analytical methods (one for terpenes and one for the rest of mentioned volatiles) comprised of automated headspace (HS) solid-phase microextraction (SPME) and gas chromatography coupled with mass spectrometric detection (GC-MS). Both methods were developed based on already published me- thod for determionation of volatiles in wine samples [2]. Among identified volatiles, 13 yeast-produced volatiles were selected and their antifungal activity was tested against B. cinerea in the fumigation bioassay. Terpenes citronellol, geraniol, nerol, α-terpineol and linalool were the most effective against B. cinerea mycelium growth with the EC50 beetwen 6,6 to 32,8 μL/L. 4-Vinyl phenol and isoamyl ace- tate also effectively inhibited mycelial growth of B. cinerea, EC50 being 48,6 and 63,3 μL/L, respectively, followed by eucalyptol (EC50 201,6 μL/L) and ethyl butyrate (EC50 238,4 μL/L). 4-Vinyl guaiacol did not show any inhibitory effect, while the remaining tested compounds showed inhibition against B. cinerea growth, however we were not able to determine EC50 with the selected concentration ranges. Additio- naly, exposure of B. cinerea-infected grape berries to the volatiles from P. guilliermondii cultures also lowered the number of infected grape berries, when applied to in vivo assay.

Herein presented novel research approach strongly suggests that yeast produced volatiles such as ter- penes, volatile phenols and esters are one of the possible mechanisms for controlling Botrytis rot of fruit and promising biofumigants.

1. Adesida R. 2022. Exploration of yeast biodiversity potential for development of alternative biofungicides in viticulture : dissertation. University of Nova Gorica.
2. Antalick, G.; Tempère, S.; Šuklje, K.; Blackman, J.W.; Deloire, A.; Revel,, G.; Schmidtke, L. M. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. (2015), J Agric Food Chem 63(41): 9103-11

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Mitja Martelanc1, Lenart Žežlina2, Tatjana Radovanović Vukajlović1, Melita Sternad Lemut1, Lorena Butinar1

1. University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
2. University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia

Contact the author*

Keywords

volatile organic compounds, HS-SPME-GC-MS, biocontrol, Botrytis cinerea

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.