terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Abstract

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

Pomaces obtained from the vinification of red grapes of Vitis vinifera L. cv. Graciano were lyophilised and grinded. Effect of various values of ethanol concentration (10 – 70 %), extraction time (1 – 5 h), temperature (30 – 50°C), particle size (1.25 – 0.2 mm) and pressure (150 – 600 bar) were investigated. Total phenolic quantification and antioxidant activity were assessed by rapid in vitro spectrophotometric assays. Phenolic profiles were identified using ultra-high performance liquid chromatography coupled to a triple quadrupole/ion trap mass spectrometer and by GC-MS analysis. The antibacterial activity of the extracts was tested by the microtiter dilution assay against a collection of E. coli strains and minimal inhibitory concentration (MIC) values were determined.

Results showed that the extract obtained under the optimal conditions exhibited the highest value of antioxidant activity (3.79 mg Trolox equivalents/g) in the assay, and the highest antimicrobial activity (MIC value of 2 mg/mL) against all the studied antibiotic susceptible and resistant E. coli strains. Chemical analyses enabled the identification of 32 volatile compounds and phenolic compounds belonging to the groups of flavonols and hydroxybenzoic acids, and the contents of these phenolic compounds were positively correlated with the antibacterial activity.

Acknowledgments: Financed with the project ADER2019-I-IDD-00048 of the Government of the Autonomous Region of La Rioja and FEDER of the E.U.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Silvia Ayuso¹,Rocío Fernández-Pérez¹, Carmen Tenorio¹, María-José Sáiz-Abajo², Miguel Gastón-Lorente² and Fernanda Ruiz-Larrea¹

1. Universidad de La Rioja, ICVV (Instituto de Ciencias de la Vid y del Vino: CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño, Spain.
2. National Center for Food Technology and Safety, CNTA, 31570 San Adrian, Spain

Contact the author*

Keywords

polyphenolic extract, supercritical fluid, antioxidant, antibacterial

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.