terclim by ICS banner
IVES 9 IVES Conference Series 9 ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Abstract

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” cha- racter has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.

Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew. Machine harvesting can enhance the formation of C6-compounds from grape lipids, leading to desirable polyfunctional mer- captan formation in wines.

A missing piece of information in most past studies on the formation of polyfunctional thiols has been the concentration of elemental sulfur in grapes. In this research, we aimed first to develop an easy and applicable method for a winery setting to analyse elemental sulfur concentration in grape juice samples. With this method in place, trials were then established to examine the link between elemental sulfur in the juice and 3MH/3MHA formation in wines. The trials were undertaken during three consecutive harvests in New Zealand in 2020, 2021, and 2022.

The study developed a sulfide sensor to measure elemental sulfur levels in grape juice samples and in- vestigated the correlation between S⁰ and polyfunctional mercaptan concentration in resulting wines. We reduced S⁰ to sulfide using dithiothreitol in acidic conditions and used an ion-selective electrode to measure sulfide concentrations. GC-MS was used to compare thiol concentration in wine with juice S⁰ levels from 2020 and 2021 samples. The investigation was expanded in 2022 by manually applying S⁰ to grapes at various intervals prior to harvesting and analyzing the relationship between residual S⁰ levels in juice and polyfunctional mercaptans in resulting wines.

The study established a dependable method based on ion-selective analysis and produced accurate ca- libration curves. The reduction process was found to be effective and the apparatus performed well with both standard and juice samples. Additionally, the results from the 2020 and 2021 trials revealed a cor- relation between increased juice elemental sulfur and a higher formation of 3MH/3MHA, supporting the theory that S⁰ contributes to the formation of 3MH in wine. This correlation was further confirmed in the 2022 trial, which saw a substantial increase in 3MH/3MHA in wines resulting from the manual application of S⁰ to the grapes through late spraying in the field.

 

1. Lund, C. M.; Thompson, M. K.; Benkwitz, F.; Wohler, M. W.; Triggs, C. M.; Gardner, R.; Heymann, H.; Nicolau, L. American Jour-nal of Enology and Viticulture 2009, 60, 1.
2. Harsch, M. J.; Benkwitz, F.; Frost, A.; Colonna-Ceccaldi, B.; Gardner, R. C.; Salmon, J.-M. Journal of agricultural and food che-mistry 2013, 61, 3703-3713.
3. Kwasniewski, M.T.; Sacks, G.L.; Wilcox, W.F. J. Enol. Vitic. 2014, 65, 453-462.
4. Lyu, X.; Dias Araujo, L.; Quek, S.-Y.; Kilmartin, P. A. Food Chemistry 2021, 346, 128914.
5. Araujo, L. D.; Vannevel, S.; Buica, A.; Callerot, S.; Fedrizzi, B.; Kilmartin, P. A.; du Toit, W. J. Food Research International 2017, 98, 79-86.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Bahareh Sarmadi¹, Paul A. Kilmartin¹, Leandro D. Araújo ², Brandt P. Bastow¹

1. School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
2. Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand 

Contact the author*

Keywords

Sauvignon blanc, polyfunctional mercaptans, elemental sulfur, varietal thiols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.