OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Abstract

Phenolic compounds are very importants in crop plants, which is why there have been the subject of a large number of studies. There are three main reasons for optimising the level of phenolic compounds in crop plants: their physiological role in the plants, their technological significance for food processing, and their nutritional characteristics. 

Several techniques have been applied to improve the phenolic content of grapes. One such strategy developed in recent years is to apply elicitors, molecules that are able to trigger plant defence responses, thus contributing to plant resistance against pathogen attacks, and to activate secondary pathways, resulting in the accumulation of phenolic and aromatic compounds. In agricultural practice, elicitor treatment may represent an effective alternative to conventional agrochemicals [1]. 

In recent years, elicitor treatments of several grape varieties and consequent modifications in the corresponding grape and wine composition have been reported. For example, the pre-harvest application of BTH to Monastrell grapes led to increase levels of phenolic compounds in the treated grapes and the corresponding wines. [1]. It can be said that elicitation is a good strategy for inducing the synthesis of different classes of bioactive secondary metabolites, although the efficacy of such treatment mainly depends on individual plant genetics, the nature of the elicitor and the dose used. 

Our research group has focused its interest on the effect of the pre-harvest application (at veraison) of two elicitors: benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and methyl jasmonate (MeJ), and a mixture of both on the phenolic composition during ripening period in two consequtives seasons (2016 and 2017); in order to be assessed whether veraison is the best moment for applying the elicitor or whether the application date could be optimised to obtain a maximum phenolic contents at harvest. 

The results were differents in function of the year study, obtaining higher concentrations of phenolic compounds in 2016 compared to 2017. On the other hand, the treatments showed higher results in all phenolic compounds studied excepted in the stilbenes when there were compared to the control grapes. Finally, some of the phenolic compounds analyzed obtained higher concentrations before harvest date. Therefore, our future objective will be to optimise the moment of elicitor application in order to obtain their maximum effect at the moment of harvest, probably by delaying the application until some weeks after veraison. 

[1] Ruiz-García, Y. et al. Journal of Agricultural and Food Chemistry, 2012, 60, 1283.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Rocio Gil-Muõz, Diego Fernando Paladines Quezada, Juan Daniel Moreno-Olivares, Jose Ignacio Fernández Fernández

Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario C/ Mayor s/n La Alberca 30150 (Murcia-Spain)

Contact the author

Keywords

Elicitors, Monastrell, Phenolic compounds, Grape 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).

Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

The “Anjou Terroirs” programme aims at bringing the necessary scientific basis for a ratio­nal and reasoned exploitation of the technical itinerary of the terroir. The scale study is 1/12500. For the mapping, many parameters, such as the granulometry or the depth of soil are observed to each point of caracterisation.

Vineyard management for environment valorisation

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.