OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Abstract

Phenolic compounds are very importants in crop plants, which is why there have been the subject of a large number of studies. There are three main reasons for optimising the level of phenolic compounds in crop plants: their physiological role in the plants, their technological significance for food processing, and their nutritional characteristics. 

Several techniques have been applied to improve the phenolic content of grapes. One such strategy developed in recent years is to apply elicitors, molecules that are able to trigger plant defence responses, thus contributing to plant resistance against pathogen attacks, and to activate secondary pathways, resulting in the accumulation of phenolic and aromatic compounds. In agricultural practice, elicitor treatment may represent an effective alternative to conventional agrochemicals [1]. 

In recent years, elicitor treatments of several grape varieties and consequent modifications in the corresponding grape and wine composition have been reported. For example, the pre-harvest application of BTH to Monastrell grapes led to increase levels of phenolic compounds in the treated grapes and the corresponding wines. [1]. It can be said that elicitation is a good strategy for inducing the synthesis of different classes of bioactive secondary metabolites, although the efficacy of such treatment mainly depends on individual plant genetics, the nature of the elicitor and the dose used. 

Our research group has focused its interest on the effect of the pre-harvest application (at veraison) of two elicitors: benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and methyl jasmonate (MeJ), and a mixture of both on the phenolic composition during ripening period in two consequtives seasons (2016 and 2017); in order to be assessed whether veraison is the best moment for applying the elicitor or whether the application date could be optimised to obtain a maximum phenolic contents at harvest. 

The results were differents in function of the year study, obtaining higher concentrations of phenolic compounds in 2016 compared to 2017. On the other hand, the treatments showed higher results in all phenolic compounds studied excepted in the stilbenes when there were compared to the control grapes. Finally, some of the phenolic compounds analyzed obtained higher concentrations before harvest date. Therefore, our future objective will be to optimise the moment of elicitor application in order to obtain their maximum effect at the moment of harvest, probably by delaying the application until some weeks after veraison. 

[1] Ruiz-García, Y. et al. Journal of Agricultural and Food Chemistry, 2012, 60, 1283.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Rocio Gil-Muõz, Diego Fernando Paladines Quezada, Juan Daniel Moreno-Olivares, Jose Ignacio Fernández Fernández

Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario C/ Mayor s/n La Alberca 30150 (Murcia-Spain)

Contact the author

Keywords

Elicitors, Monastrell, Phenolic compounds, Grape 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.