OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Abstract

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine. 

In this context, the first part of this work was to provide an overview of the potentialities of oenological interest of non-Saccharomyces species isolated from grape juices. The fermentations were carried out in enological conditions, at 24°C and the potential of several non-Saccharomyces yeasts to produce hydrolytic enzymes and metabolites contributing to the sensory properties of wines has been reaffirmed. In particular, the use of Starmerella bacilliaris exhibited an increased production of glycerol with a concomitant ethanol decrease. Furthermore, some strains of Hanseniaspora osmophila and Metschnikowia pulcherrima produced esters and thiols, which may have a positive incidence on the sensory quality of wines. 

Then, the nitrogen requirements of non-Saccharomyces yeasts were characterized. The analysis of the complete dataset revealed differences between species and even between strains in their preferred nitrogen sources. For example, S. bacilliaris strains consumed a limited fraction of amino acids during fermentation while exhausting all the available ammonium. Overall, this work enhanced our understanding of yeasts’ nitrogen requirement and metabolism. It also pointed out that an appropriate management of the nitrogen nutrition of yeasts during co- or sequential fermentations to take full advantage of the potentialities of non-Saccharomyces species.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Pauline Seguinot (1, 2), Vasileios Englezos (3), Guillaume Bergler (1, 4), Anne Julien-Ortiz (2), Carole Camarasa (1), Audrey Bloem (1)

1 UMR SPO, INRA, Université Montpellier, SupAgro – France 
2 Lallemand SAS, Blagnac- France 
3 DISAFA, University of Turin, Cuneo – Italy 
4 Pernod-Ricard, Paris – France 

Contact the author

Keywords

Non-Saccharomyces yeast, nitrogen consumption, metabolite production, wine fermentation

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition

In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

Impact of yeast strain and aging time on the secondary metabolites, macromolecule composition, and sensory attributes of sparkling wines elaborated by the traditional method

The occurrence of aroma and macromolecule constituents in sparkling wines, directly influencing their organoleptic characteristics, is affected by several factors, including the grape cultivar, base-wine particularities, inoculated yeasts, the aging time, and winemaking practices [1].

Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.