OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Abstract

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine. 

In this context, the first part of this work was to provide an overview of the potentialities of oenological interest of non-Saccharomyces species isolated from grape juices. The fermentations were carried out in enological conditions, at 24°C and the potential of several non-Saccharomyces yeasts to produce hydrolytic enzymes and metabolites contributing to the sensory properties of wines has been reaffirmed. In particular, the use of Starmerella bacilliaris exhibited an increased production of glycerol with a concomitant ethanol decrease. Furthermore, some strains of Hanseniaspora osmophila and Metschnikowia pulcherrima produced esters and thiols, which may have a positive incidence on the sensory quality of wines. 

Then, the nitrogen requirements of non-Saccharomyces yeasts were characterized. The analysis of the complete dataset revealed differences between species and even between strains in their preferred nitrogen sources. For example, S. bacilliaris strains consumed a limited fraction of amino acids during fermentation while exhausting all the available ammonium. Overall, this work enhanced our understanding of yeasts’ nitrogen requirement and metabolism. It also pointed out that an appropriate management of the nitrogen nutrition of yeasts during co- or sequential fermentations to take full advantage of the potentialities of non-Saccharomyces species.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Pauline Seguinot (1, 2), Vasileios Englezos (3), Guillaume Bergler (1, 4), Anne Julien-Ortiz (2), Carole Camarasa (1), Audrey Bloem (1)

1 UMR SPO, INRA, Université Montpellier, SupAgro – France 
2 Lallemand SAS, Blagnac- France 
3 DISAFA, University of Turin, Cuneo – Italy 
4 Pernod-Ricard, Paris – France 

Contact the author

Keywords

Non-Saccharomyces yeast, nitrogen consumption, metabolite production, wine fermentation

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: grape and must composition

This work discusses the effects of soil and weather conditions on the grape composition of cv. Tempranillo in four different locations of Spain, during the 2008-2011 seasons.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.