OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Abstract

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine. 

In this context, the first part of this work was to provide an overview of the potentialities of oenological interest of non-Saccharomyces species isolated from grape juices. The fermentations were carried out in enological conditions, at 24°C and the potential of several non-Saccharomyces yeasts to produce hydrolytic enzymes and metabolites contributing to the sensory properties of wines has been reaffirmed. In particular, the use of Starmerella bacilliaris exhibited an increased production of glycerol with a concomitant ethanol decrease. Furthermore, some strains of Hanseniaspora osmophila and Metschnikowia pulcherrima produced esters and thiols, which may have a positive incidence on the sensory quality of wines. 

Then, the nitrogen requirements of non-Saccharomyces yeasts were characterized. The analysis of the complete dataset revealed differences between species and even between strains in their preferred nitrogen sources. For example, S. bacilliaris strains consumed a limited fraction of amino acids during fermentation while exhausting all the available ammonium. Overall, this work enhanced our understanding of yeasts’ nitrogen requirement and metabolism. It also pointed out that an appropriate management of the nitrogen nutrition of yeasts during co- or sequential fermentations to take full advantage of the potentialities of non-Saccharomyces species.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Pauline Seguinot (1, 2), Vasileios Englezos (3), Guillaume Bergler (1, 4), Anne Julien-Ortiz (2), Carole Camarasa (1), Audrey Bloem (1)

1 UMR SPO, INRA, Université Montpellier, SupAgro – France 
2 Lallemand SAS, Blagnac- France 
3 DISAFA, University of Turin, Cuneo – Italy 
4 Pernod-Ricard, Paris – France 

Contact the author

Keywords

Non-Saccharomyces yeast, nitrogen consumption, metabolite production, wine fermentation

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine. However it remains misconceived as an ordinary wine, lacking authenticity.

Grapevine sensitivity to fungal diseases: use of a combination of terroir cartography and parcel survey

In front of the economic interest and seeking to respect their environment, the wine growers move gradually towards a policy of reasoning their plant health protection. This is why, starting from epidemiologic studies on grapevine pathogens, forecasting models of the risks are developed by research and experimentation bodies.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

Budburst delay and berry ripening after vegetal oil application in Austria

Occurrence of freezing temperatures in early spring when grapevine shoots are developing is termed late frost in viticulture. Young green tissues are very sensible to temperatures below zero and damages often lead to important yield and quality losses such as the case in Europe in 2017. An indirect method to avoid late frost damage in vineyards consist in delaying the budburst. Previous research reported similar effects by applying vegetal oil on dormant buds. Here, we tested the application of rapeseed vegetal oil during late winter to delay the budburst on two V.vinifera cultivars of interest in Austria, Grüner Veltliner (GV) and Zweigelt (ZW).