OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Abstract

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine. 

In this context, the first part of this work was to provide an overview of the potentialities of oenological interest of non-Saccharomyces species isolated from grape juices. The fermentations were carried out in enological conditions, at 24°C and the potential of several non-Saccharomyces yeasts to produce hydrolytic enzymes and metabolites contributing to the sensory properties of wines has been reaffirmed. In particular, the use of Starmerella bacilliaris exhibited an increased production of glycerol with a concomitant ethanol decrease. Furthermore, some strains of Hanseniaspora osmophila and Metschnikowia pulcherrima produced esters and thiols, which may have a positive incidence on the sensory quality of wines. 

Then, the nitrogen requirements of non-Saccharomyces yeasts were characterized. The analysis of the complete dataset revealed differences between species and even between strains in their preferred nitrogen sources. For example, S. bacilliaris strains consumed a limited fraction of amino acids during fermentation while exhausting all the available ammonium. Overall, this work enhanced our understanding of yeasts’ nitrogen requirement and metabolism. It also pointed out that an appropriate management of the nitrogen nutrition of yeasts during co- or sequential fermentations to take full advantage of the potentialities of non-Saccharomyces species.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Pauline Seguinot (1, 2), Vasileios Englezos (3), Guillaume Bergler (1, 4), Anne Julien-Ortiz (2), Carole Camarasa (1), Audrey Bloem (1)

1 UMR SPO, INRA, Université Montpellier, SupAgro – France 
2 Lallemand SAS, Blagnac- France 
3 DISAFA, University of Turin, Cuneo – Italy 
4 Pernod-Ricard, Paris – France 

Contact the author

Keywords

Non-Saccharomyces yeast, nitrogen consumption, metabolite production, wine fermentation

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

The influences of quality compost A+ and of a commercial organic fertilizer based on dry mash from bioethanol production, blackstrap molasses, vinasse, PNC (potato nitrogen concentrate) and CSL (corn steep liquor) on the humus content, on the mineral nitrogen content in the soil, in the must and in the vine leaves, on pruning wood

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Phenolic composition and physicochemical analysis of wines made with the Syrah grape under double pruning in the Brazilian high-altitude Cerrado

This study explores the growing potential of vitiviniculture in Brazil’s Federal District, an emerging wine region marked by unique climatic conditions and innovative cultivation techniques.

Which heat test can realistically estimate white wine haze risk?

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.